Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Crucial Roles for SIRT2 and AMPA Receptor Acetylation in Synaptic Plasticity and Memory.

Cell reports | 2017

AMPA receptors (AMPARs) mediate fast excitatory synaptic transmission and are crucial for synaptic plasticity, learning, and memory. However, the molecular control of AMPAR stability and its neurophysiological significance remain unclear. Here, we report that AMPARs are subject to lysine acetylation at their C termini. Acetylation reduces AMPAR internalization and degradation, leading to increased cell-surface localization and prolonged receptor half-life. Through competition for the same lysine residues, acetylation intensity is inversely related to the levels of AMPAR ubiquitination. We find that sirtuin 2 (SIRT2) acts as an AMPAR deacetylase regulating AMPAR trafficking and proteostasis. SIRT2 knockout mice (Sirt2-/-) show marked upregulation in AMPAR acetylation and protein accumulation. Both Sirt2-/- mice and mice expressing acetylation mimetic GluA1 show aberrant synaptic plasticity, accompanied by impaired learning and memory. These findings establish SIRT2-regulated lysine acetylation as a form of AMPAR post-translational modification that regulates its turnover, as well as synaptic plasticity and cognitive function.

Pubmed ID: 28793258 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIMH NIH HHS, United States
    Id: R01 MH079407

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Addgene (tool)

RRID:SCR_002037

Non-profit plasmid repository dedicated to helping scientists around the world share high-quality plasmids. Facilitates archiving and distributing DNA-based research reagents and associated data to scientists worldwide. Repository contains over 65,000 plasmids, including special collections on CRISPR, fluorescent proteins, and ready-to-use viral preparations. There is no cost for scientists to deposit plasmids, which saves time and money associated with shipping plasmids themselves. All plasmids are fully sequenced for validation and sequencing data is openly available. We handle the appropriate Material Transfer Agreements (MTA) with institutions, facilitating open exchange and offering intellectual property and liability protection for depositing scientists. Furthermore, we curate free educational resources for the scientific community including a blog, eBooks, video protocols, and detailed molecular biology resources.

View all literature mentions

National Gene Vector Biorepository (tool)

RRID:SCR_004760

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. Archiving services, insertional site analysis, pharmacology and toxicology resources, and reagent repository for academic investigators and others conducting gene therapy research. Databases and educational resources are open to everyone. Other services are limited to gene therapy investigators working in academic or other non-profit organizations. Stores reserve or back-up clinical grade vector and master cell banks. Maintains samples from any gene therapy related Pharmacology or Toxicology study that has been submitted to FDA by U.S. academic investigator that require storage under Good Laboratory Practices. For certain gene therapy clinical trials, FDA has required post-trial monitoring of patients, evaluating clinical samples for evidence of clonal expansion of cells. To help academic investigators comply with this FDA recommendation, the NGVB offers assistance with clonal analysis using LAM-PCR and LM-PCR technology.

View all literature mentions