Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

PTEN Loss Increases the Connectivity of Fast Synaptic Motifs and Functional Connectivity in a Developing Hippocampal Network.

The Journal of neuroscience : the official journal of the Society for Neuroscience | 2017

Changes in synaptic strength and connectivity are thought to be a major mechanism through which many gene variants cause neurological disease. Hyperactivation of the PI3K-mTOR signaling network, via loss of function of repressors such as PTEN, causes epilepsy in humans and animal models, and altered mTOR signaling may contribute to a broad range of neurological diseases. Changes in synaptic transmission have been reported in animal models of PTEN loss; however, the full extent of these changes, and their effect on network function, is still unknown. To better understand the scope of these changes, we recorded from pairs of mouse hippocampal neurons cultured in a two-neuron microcircuit configuration that allowed us to characterize all four major connection types within the hippocampus. Loss of PTEN caused changes in excitatory and inhibitory connectivity, and these changes were postsynaptic, presynaptic, and transynaptic, suggesting that disruption of PTEN has the potential to affect most connection types in the hippocampal circuit. Given the complexity of the changes at the synaptic level, we measured changes in network behavior after deleting Pten from neurons in an organotypic hippocampal slice network. Slices containing Pten-deleted neurons showed increased recruitment of neurons into network bursts. Importantly, these changes were not confined to Pten-deleted neurons, but involved the entire network, suggesting that the extensive changes in synaptic connectivity rewire the entire network in such a way that promotes a widespread increase in functional connectivity.SIGNIFICANCE STATEMENT Homozygous deletion of the Pten gene in neuronal subpopulations in the mouse serves as a valuable model of epilepsy caused by mTOR hyperactivation. To better understand how gene deletions lead to altered neuronal activity, we investigated the synaptic and network effects that occur 1 week after Pten deletion. PTEN loss increased the connectivity of all four types of hippocampal synaptic connections, including two forms of increased inhibition of inhibition, and increased network functional connectivity. These data suggest that single gene mutations that cause neurological diseases such as epilepsy may affect a surprising range of connection types. Moreover, given the robustness of homeostatic plasticity, these diverse effects on connection types may be necessary to cause network phenotypes such as increased synchrony.

Pubmed ID: 28751459 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Anti-VGAT (antibody)

RRID:AB_887873

This polyclonal targets VGAT (cytoplasmic domain)

View all literature mentions

Anti-VGLUT 1 (antibody)

RRID:AB_887877

This polyclonal targets VGLUT 1

View all literature mentions

Anti-4E-BP1, phospho (Thr37 / Thr46) Monoclonal Antibody (antibody)

RRID:AB_560835

This monoclonal targets 4E-BP1, phospho (Thr37 / Thr46)

View all literature mentions

Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (antibody)

RRID:AB_2315049

This monoclonal targets Phospho-Akt (Ser473)

View all literature mentions

Phospho-S6 Ribosomal Protein (Ser240/244) (D68F8) XP Rabbit mAb (antibody)

RRID:AB_10694233

This monoclonal targets Phospho-S6 Ribosomal Protein (Ser240/244) (D68F8) XP Rabbit mAb

View all literature mentions

Anti-MAP 2 (antibody)

RRID:AB_2147096

This monoclonal targets MAP 2

View all literature mentions

GraphPad Prism (software resource)

RRID:SCR_002798

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

View all literature mentions

Axograph (software resource)

RRID:SCR_014284

A software tool which provides a means to acquire and analyze time-series data, as well as a direct route to publication quality graphics. It provides a variety of graph styles and automated, extended, and/or customizable analyses.

View all literature mentions

pClamp (software resource)

RRID:SCR_011323

Software suite for electrophysiology data acquisition and analysis by Molecular Devices. Used for the control and recording of voltage clamp, current clamp, and patch clamp experiments. The software suite consists of Clampex 11 Software for data acquisition, AxoScope 11 Software for background recording, Clampfit 11 Software for data analysis, and optional Clampfit Advanced Analysis Module for sophisticated and streamlined analysis.

View all literature mentions