Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Electrophysiological Evidence That the Retrosplenial Cortex Displays a Strong and Specific Activation Phased with Hippocampal Theta during Paradoxical (REM) Sleep.

The Journal of neuroscience : the official journal of the Society for Neuroscience | 2017

It is widely accepted that cortical neurons are similarly more activated during waking and paradoxical sleep (PS; aka REM) than during slow-wave sleep (SWS). However, we recently reported using Fos labeling that only a few limbic cortical structures including the retrosplenial cortex (RSC) and anterior cingulate cortex (ACA) contain a large number of neurons activated during PS hypersomnia. Our aim in the present study was to record local field potentials and unit activity from these two structures across all vigilance states in freely moving male rats to determine whether the RSC and the ACA are electrophysiologically specifically active during basal PS episodes. We found that theta power was significantly higher during PS than during active waking (aWK) similarly in the RSC and hippocampus (HPC) but not in ACA. Phase-amplitude coupling between HPC theta and gamma oscillations strongly and specifically increased in RSC during PS compared with aWK. It did not occur in ACA. Further, 68% and 43% of the units recorded in the RSC and ACA were significantly more active during PS than during aWK and SWS, respectively. In addition, neuronal discharge of RSC but not of ACA neurons increased just after the peak of hippocampal theta wave. Our results show for the first time that RSC neurons display enhanced spiking in synchrony with theta specifically during PS. We propose that activation of RSC neurons specifically during PS may play a role in the offline consolidation of spatial memories, and in the generation of vivid perceptual scenery during dreaming.SIGNIFICANCE STATEMENT Fifty years ago, Michel Jouvet used the term paradoxical to define REM sleep because of the simultaneous occurrence of a cortical activation similar to waking accompanied by muscle atonia. However, we recently demonstrated using functional neuroanatomy that only a few limbic structures including the retrosplenial cortex (RSC) and anterior cingulate cortex (ACA) are activated during PS. In the present study, we show for the first time that the RSC and ACA contain neurons firing more during PS than in any other state. Further, RSC neurons are firing in phase with the hippocampal theta rhythm. These data indicate that the RSC is very active during PS and could play a key role in memory consolidation taking place during this state.

Pubmed ID: 28729438 RIS Download

Additional research tools detected in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


EEGLAB (data processing software)

RRID:SCR_007292

Interactive Matlab toolbox for processing continuous and event-related EEG, MEG and other electrophysiological data incorporating independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data. First developed on Matlab 5.3 under Linux, EEGLAB runs on Matlab v5 and higher under Linux, Unix, Windows, and Mac OS X (Matlab 7+ recommended). EEGLAB provides an interactive graphic user interface (GUI) allowing users to flexibly and interactively process their high-density EEG and other dynamic brain data using independent component analysis (ICA) and/or time/frequency analysis (TFA), as well as standard averaging methods. EEGLAB also incorporates extensive tutorial and help windows, plus a command history function that eases users'' transition from GUI-based data exploration to building and running batch or custom data analysis scripts. EEGLAB offers a wealth of methods for visualizing and modeling event-related brain dynamics, both at the level of individual EEGLAB ''datasets'' and/or across a collection of datasets brought together in an EEGLAB ''studyset.'' For experienced Matlab users, EEGLAB offers a structured programming environment for storing, accessing, measuring, manipulating and visualizing event-related EEG data. For creative research programmers and methods developers, EEGLAB offers an extensible, open-source platform through which they can share new methods with the world research community by publishing EEGLAB ''plug-in'' functions that appear automatically in the EEGLAB menu of users who download them. For example, novel EEGLAB plug-ins might be built and released to ''pick peaks'' in ERP or time/frequency results, or to perform specialized import/export, data visualization, or inverse source modeling of EEG, MEG, and/or ECOG data. EEGLAB Features * Graphic user interface * Multiformat data importing * High-density data scrolling * Defined EEG data structure * Open source plug-in facility * Interactive plotting functions * Semi-automated artifact removal * ICA & time/frequency transforms * Many advanced plug-in toolboxes * Event & channel location handling * Forward/inverse head/source modeling

View all literature mentions

Offline Sorter (software resource)

RRID:SCR_000012

Offline spike sorting software. This software tool for viewing and classifying action potential waveforms (spikes) previously collected from single electrodes, stereotrodes and tetrodes accepts file types from many data acquisition companies and software programs.

View all literature mentions

MATLAB (software resource)

RRID:SCR_001622

Multi paradigm numerical computing environment and fourth generation programming language developed by MathWorks. Allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran and Python. Used to explore and visualize ideas and collaborate across disciplines including signal and image processing, communications, control systems, and computational finance.

View all literature mentions

HotHsd:SD (organism)

RRID:RGD_5508397

Rattus norvegicus with name HotHsd:SD from RGD.

View all literature mentions