Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Sodium selenate activated Wnt/β-catenin signaling and repressed amyloid-β formation in a triple transgenic mouse model of Alzheimer's disease.

Experimental neurology | 2017

Accumulating evidences show that selenium dietary intake is inversely associated with the mortality of Alzheimer's disease (AD). Sodium selenate has been reported to reduce neurofibrillary tangles (NFT) in the tauopathic mouse models, but its effects on the Wnt/β-catenin signaling pathway and APP processing remain unknown during AD formation. In this paper, triple transgenic AD mice (3×Tg-AD) had been treated with sodium selenate in drinking water for 10month before the detection of hippocampal pathology. Increased Aβ generation, tau hyperphosphorylation and neuronal apoptosis were found in the hippocampus of AD model mouse. Down-regulation of Wnt/β-catenin signaling is closely associated with the alteration of AD pathology. Treatment with sodium selenate significantly promoted the activity of protein phosphatases of type 2A (PP2A) and repressed the hallmarks of AD. Activation of PP2A by sodium selenate could increase active β-catenin level and inhibit GSK3β activity in the hippocampal tissue and primarily cultured neurons of AD model mouse, leading to activation of Wnt/β-catenin signaling and transactivation of target genes, including positively-regulated genes c-myc, survivin, TXNRD2 and negatively-regulated gene BACE1. Meanwhile, APP phosphorylation was also reduced on the Thr668 residue after selenate treatment, causing the decreases of APP cleavage and Aβ generation. These findings reveal that the Wnt/β-catenin signaling is a potential target for prevention of AD and sodium selenate may be developed as a new drug for AD treatment.

Pubmed ID: 28711506 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GraphPad Prism (tool)

RRID:SCR_002798

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

View all literature mentions