Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Aberrant Sodium Channel Currents and Hyperexcitability of Medial Entorhinal Cortex Neurons in a Mouse Model of SCN8A Encephalopathy.

SCN8A encephalopathy, or early infantile epileptic encephalopathy 13 (EIEE13), is caused predominantly by de novo gain-of-function mutations in the voltage-gated Na channel Nav1.6. Affected individuals suffer from refractory seizures, developmental delay, cognitive disability, and elevated risk of sudden unexpected death in epilepsy (SUDEP). A knock-in mouse model carrying the patient mutation p.Asn1768Asp (N1768D) reproduces many features of the disorder, including spontaneous seizures and SUDEP. We used the mouse model to examine the effects of the mutation on layer II stellate neurons of the medial entorhinal cortex (mEC), which transmit excitatory input to the hippocampus. Heterozygous (Scn8aD/+), homozygous (Scn8aD/D)), and WT (Scn8a+/+) littermates were compared at 3 weeks of age, the time of seizure onset for homozygous mice. Heterozygotes remain seizure free for another month. mEC layer II neurons of heterozygous and homozygous mice were hyperexcitable and generated long-lasting depolarizing potentials with bursts of action potentials after synaptic stimulation. Recording of Na currents revealed proexcitatory increases in persistent and resurgent currents and rightward shifts in inactivation parameters, leading to significant increases in the magnitude of window currents. The proexcitatory changes were more pronounced in homozygous mice than in heterozygotes, consistent with the earlier age of seizure onset in homozygotes. These studies demonstrate that the N1768D mutation increases the excitability of mEC layer II neurons by increasing persistent and resurgent Na currents and disrupting channel inactivation. The aberrant activities of mEC layer II neurons would provide excessive excitatory input to the hippocampus and contribute to hyperexcitability of hippocampal neurons in this model of SCN8A encephalopathy.SIGNIFICANCE STATEMENTSCN8A encephalopathy is a devastating neurological disorder that results from de novo mutations in the Na channel Nav1.6. In addition to seizures, patients suffer from cognitive and developmental delays and are at high risk for sudden unexpected death in epilepsy (SUDEP). A mouse knock-in model expressing the patient mutation N1768D reproduces several pathological phenotypes, including spontaneous seizures and sudden death. We demonstrate that medial entorhinal cortex (mEC) neurons from the mouse model exhibit proexcitatory alterations in Na channel activity, some of which were not seen in hippocampal or cortical neurons, and resulting in neuronal hyperexcitability. Because mEC neurons regulate the activity of the hippocampus, which plays an important role in seizure onset, we propose that these profound changes in mEC neuron excitability associated with the gain-of-function mutation of Nav1.6 may increase excitatory drive into the hippocampus, culminating in seizure activity and SUDEP.

Pubmed ID: 28676574 RIS Download

Mesh terms: Action Potentials | Animals | Brain Diseases | Brugada Syndrome | Disease Models, Animal | Entorhinal Cortex | Epilepsy | Female | Gene Knock-In Techniques | Male | Mice | Mice, Inbred C57BL | Mice, Transgenic | Mutation | NAV1.6 Voltage-Gated Sodium Channel | Neurons | Organ Culture Techniques | Sodium Channels

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MATLAB

A multi-paradigm numerical computing environment and fourth-generation programming language. It allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran and Python. (Adapted from Wikipedia) The high-level language and interactive environment lets you explore and visualize ideas and collaborate across disciplines including signal and image processing, communications, control systems, and computational finance.

tool

View all literature mentions

ImageJ

Software tool as an open source Java-based image processing program designed for scientific multidimensional images. ImageJ has been transformed to ImageJ2 application to improve data engine to be sufficient to analyze modern datasets.

tool

View all literature mentions

GraphPad Prism

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

tool

View all literature mentions