Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Brief isoflurane anesthesia regulates striatal AKT-GSK3β signaling and ameliorates motor deficits in a rat model of early-stage Parkinson's disease.

Journal of neurochemistry | 2017

Parkinson's disease (PD) is a progressive neurodegenerative movement disorder primarily affecting the nigrostriatal dopaminergic system. The link between heightened activity of glycogen synthase kinase 3β (GSK3β) and neurodegene-rative processes has encouraged investigation into the potential disease-modifying effects of novel GSK3β inhibitors in experimental models of PD. Therefore, the intriguing ability of several anesthetics to readily inhibit GSK3β within the cortex and hippocampus led us to investigate the effects of brief isoflurane anesthesia on striatal GSK3β signaling in naïve rats and in a rat model of early-stage PD. Deep but brief (20-min) isoflurane anesthesia exposure increased the phosphorylation of GSK3β at the inhibitory Ser9 residue, and induced phosphorylation of AKTThr308 (protein kinase B; negative regulator of GSK3β) in the striatum of naïve rats and rats with unilateral striatal 6-hydroxydopamine (6-OHDA) lesion. The 6-OHDA protocol produced gradual functional deficiency within the nigrostriatal pathway, reflected as a preference for using the limb ipsilateral to the lesioned striatum at 2 weeks post 6-OHDA. Interestingly, such motor impairment was not observed in animals exposed to four consecutive isoflurane treatments (20-min anesthesia every 48 h; treatments started 7 days after 6-OHDA delivery). However, isoflurane had no effect on striatal or nigral tyrosine hydroxylase (a marker of dopaminergic neurons) protein levels. This brief report provides promising results regarding the therapeutic potential and neurobiological mechanisms of anesthetics in experimental models of PD and guides development of novel disease-modifying therapies.

Pubmed ID: 28488766 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


WI (tool)

RRID:RGD_13508588

Rattus norvegicus with name WI from RGD.

View all literature mentions

Akt Antibody (antibody)

RRID:AB_329827

This polyclonal targets Akt

View all literature mentions

GAPDH Antibody (FL-335) (antibody)

RRID:AB_10167668

This polyclonal targets GAPDH

View all literature mentions

Anti-Tyrosine Hydroxylase Antibody, clone LNC1 (antibody)

RRID:AB_2201528

This monoclonal targets Tyrosine Hydroxylase

View all literature mentions

GSK-3beta (27C10) Rabbit mAb (antibody)

RRID:AB_490890

This monoclonal targets GSK-3beta (27C10) Rabbit mAb

View all literature mentions

Phospho-GSK-3 (Ser9) Antibody (antibody)

RRID:AB_331405

This polyclonal targets Phospho-GSK-3 (Ser9)

View all literature mentions