Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

HIV Exploits Antiviral Host Innate GCN2-ATF4 Signaling for Establishing Viral Replication Early in Infection.

mBio | 2017

Antiviral innate host defenses against acute viral infections include suppression of host protein synthesis to restrict viral protein production. Less is known about mechanisms by which viral pathogens subvert host antiviral innate responses for establishing their replication and dissemination. We investigated early innate defense against human immunodeficiency virus (HIV) infection and viral evasion by utilizing human CD4+ T cell cultures in vitro and a simian immunodeficiency virus (SIV) model of AIDS in vivo Our data showed that early host innate defense against the viral infection involves GCN2-ATF4 signaling-mediated suppression of global protein synthesis, which is exploited by the virus for supporting its own replication during early viral infection and dissemination in the gut mucosa. Suppression of protein synthesis and induction of protein kinase GCN2-ATF4 signaling were detected in the gut during acute SIV infection. These changes diminished during chronic viral infection. HIV replication induced by serum deprivation in CD4+ T cells was linked to the induction of ATF4 that was recruited to the HIV long terminal repeat (LTR) to promote viral transcription. Experimental inhibition of GCN2-ATF4 signaling either by a specific inhibitor or by amino acid supplementation suppressed the induction of HIV expression. Enhancing ATF4 expression through selenium administration resulted in reactivation of latent HIV in vitro as well as ex vivo in the primary CD4+ T cells isolated from patients receiving suppressive antiretroviral therapy (ART). In summary, HIV/SIV exploits the early host antiviral response through GCN2-ATF4 signaling by utilizing ATF4 for activating the viral LTR transcription to establish initial viral replication and is a potential target for HIV prevention and therapy.IMPORTANCE Understanding how HIV overcomes host antiviral innate defense response in order to establish infection and dissemination is critical for developing prevention and treatment strategies. Most investigations focused on the viral pathogenic mechanisms leading to immune dysfunction following robust viral infection and dissemination. Less is known about mechanisms that enable HIV to establish its presence despite rapid onset of host antiviral innate response. Our novel findings provide insights into the viral strategy that hijacks the host innate response of the suppression of protein biosynthesis to restrict the virus production. The virus leverages transcription factor ATF4 expression during the GCN2-ATF4 signaling response and utilizes it to activate viral transcription through the LTR to support viral transcription and production in both HIV and SIV infections. This unique viral strategy is exploiting the innate response and is distinct from the mechanisms of immune dysfunction after the critical mass of viral loads is generated.

Pubmed ID: 28465428 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIH HHS, United States
    Id: P51 OD011107
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK061297
  • Agency: NIAID NIH HHS, United States
    Id: R01 AI123105
  • Agency: NIAID NIH HHS, United States
    Id: P30 AI027763
  • Agency: NIAID NIH HHS, United States
    Id: R01 AI043274

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


US Biological (tool)

RRID:SCR_013653

An Antibody supplier

View all literature mentions

MetaboAnalyst (tool)

RRID:SCR_015539

Web server for statistical, functional and integrative analysis of metabolomics data. Web based tool suite used for metabolomic data processing, normalization, multivariate statistical analysis, and data annotation, biomarker discovery and classification.

View all literature mentions

Ingenuity Pathway Analysis (tool)

RRID:SCR_008653

A web-based software application that enables users to analyze, integrate, and understand data derived from gene expression, microRNA, and SNP microarrays, metabolomics, proteomics, and RNA-Seq experiments, and small-scale experiments that generate gene and chemical lists. Users can search for targeted information on genes, proteins, chemicals, and drugs, and build interactive models of experimental systems. IPA allows exploration of molecular, chemical, gene, protein and miRNA interactions, creation of custom molecular pathways, and the ability to view and modify metabolic, signaling, and toxicological canonical pathways. In addition to the networks and pathways that can be created, IPA can provide multiple layering of additional information, such as drugs, disease genes, expression data, cellular functions and processes, or a researchers own genes or chemicals of interest.

View all literature mentions

NIH AIDS Reagent Program (tool)

RRID:SCR_023191

NIH HIV Reagent Program has been managed under contract by American Type Culture Collection (ATCC) since 2020. ATCC shall maintain the NIH HIV Reagent Program through identification, acquisition, production, receipt, storage, maintenance, distribution and disposal of biological and chemical research organisms and materials for HIV and other infectious diseases for use in basic and translational research.

View all literature mentions

Jurkat (tool)

RRID:CVCL_0065

Cell line Jurkat is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions