Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A Genome-Scale Model of Shewanella piezotolerans Simulates Mechanisms of Metabolic Diversity and Energy Conservation.

mSystems | 2017

Shewanella piezotolerans strain WP3 belongs to the group 1 branch of the Shewanella genus and is a piezotolerant and psychrotolerant species isolated from the deep sea. In this study, a genome-scale model was constructed for WP3 using a combination of genome annotation, ortholog mapping, and physiological verification. The metabolic reconstruction contained 806 genes, 653 metabolites, and 922 reactions, including central metabolic functions that represented nonhomologous replacements between the group 1 and group 2 Shewanella species. Metabolic simulations with the WP3 model demonstrated consistency with existing knowledge about the physiology of the organism. A comparison of model simulations with experimental measurements verified the predicted growth profiles under increasing concentrations of carbon sources. The WP3 model was applied to study mechanisms of anaerobic respiration through investigating energy conservation, redox balancing, and the generation of proton motive force. Despite being an obligate respiratory organism, WP3 was predicted to use substrate-level phosphorylation as the primary source of energy conservation under anaerobic conditions, a trait previously identified in other Shewanella species. Further investigation of the ATP synthase activity revealed a positive correlation between the availability of reducing equivalents in the cell and the directionality of the ATP synthase reaction flux. Comparison of the WP3 model with an existing model of a group 2 species, Shewanella oneidensis MR-1, revealed that the WP3 model demonstrated greater flexibility in ATP production under the anaerobic conditions. Such flexibility could be advantageous to WP3 for its adaptation to fluctuating availability of organic carbon sources in the deep sea. IMPORTANCE The well-studied nature of the metabolic diversity of Shewanella bacteria makes species from this genus a promising platform for investigating the evolution of carbon metabolism and energy conservation. The Shewanella phylogeny is diverged into two major branches, referred to as group 1 and group 2. While the genotype-phenotype connections of group 2 species have been extensively studied with metabolic modeling, a genome-scale model has been missing for the group 1 species. The metabolic reconstruction of Shewanella piezotolerans strain WP3 represented the first model for Shewanella group 1 and the first model among piezotolerant and psychrotolerant deep-sea bacteria. The model brought insights into the mechanisms of energy conservation in WP3 under anaerobic conditions and highlighted its metabolic flexibility in using diverse carbon sources. Overall, the model opens up new opportunities for investigating energy conservation and metabolic adaptation, and it provides a prototype for systems-level modeling of other deep-sea microorganisms.

Pubmed ID: 28382331 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


BioCyc (tool)

RRID:SCR_002298

A collection of Pathway/Genome Databases which describes the genome and metabolic pathways of a single organism. The BioCyc collection of Pathway/Genome Databases (PGDBs) provides an electronic reference source on the genomes and metabolic pathways of sequenced organisms. BioCyc PGDBs are generated by software that predicts the metabolic pathway complements of completely sequenced organisms from their genome sequences. They also include the results of a number of other computational inference procedures applied to these genomes, including predictions of which genes code for missing enzymes in metabolic pathways, and predicted operons. The BioCyc Web site provides a suite of software tools for database searching and visualization, for omics data analysis, and for comparative genomics and comparative pathway questions. The databases within the BioCyc collection are organized into tiers according to the amount of manual review and updating they have received. Tier 1 PGDBs have been created through intensive manual efforts, and receive continuous updating. Tier 2 PGDBs were computationally generated by the PathoLogic program, and have undergone moderate amounts of review and updating. Tier 3 PGDBs were computationally generated by the PathoLogic program, and have undergone no review and updating. There are 967 DBs in Tier 3. The downloadable version of BioCyc that includes the Pathway Tools software provides more speed and power than the BioCyc Web site.

View all literature mentions

RAxML (tool)

RRID:SCR_006086

Software program for phylogenetic analyses of large datasets under maximum likelihood.

View all literature mentions

MUSCLE (tool)

RRID:SCR_011812

Multiple sequence alignment method with reduced time and space complexity.Multiple sequence alignment with high accuracy and high throughput. Data analysis service for multiple sequence comparison by log- expectation.

View all literature mentions