Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Deficiency in Neuronal TGF-β Signaling Leads to Nigrostriatal Degeneration and Activation of TGF-β Signaling Protects against MPTP Neurotoxicity in Mice.

Transforming growth factor-β (TGF-β) plays an important role in the development and maintenance of embryonic dopaminergic (DA) neurons in the midbrain. To study the function of TGF-β signaling in the adult nigrostriatal system, we generated transgenic mice with reduced TGF-β signaling in mature neurons. These mice display age-related motor deficits and degeneration of the nigrostriatal system. Increasing TGF-β signaling in the substantia nigra through adeno-associated virus expressing a constitutively active type I receptor significantly reduces 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration and motor deficits. These results suggest that TGF-β signaling is critical for adult DA neuron survival and that modulating this signaling pathway has therapeutic potential in Parkinson disease.SIGNIFICANCE STATEMENT We show that reducing Transforming growth factor-β (TGF-β) signaling promotes Parkinson disease-related pathologies and motor deficits, and increasing TGF-β signaling reduces neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a parkinsonism-inducing agent. Our results provide a rationale to pursue a means of increasing TGF-β signaling as a potential therapy for Parkinson's disease.

Pubmed ID: 28363982 RIS Download

Mesh terms: Animals | Cell Survival | Gait Disorders, Neurologic | MPTP Poisoning | Maze Learning | Mice | Mice, Inbred C57BL | Mice, Transgenic | Neostriatum | Neurodegenerative Diseases | Postural Balance | Protein-Serine-Threonine Kinases | Receptors, Transforming Growth Factor beta | Signal Transduction | Substantia Nigra | Transforming Growth Factor beta

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GraphPad Prism

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

tool

View all literature mentions

MetaMorph Microscopy Automation and Image Analysis Software

Software tool for automated microscope acquisition, device control, and image analysis. Used for integrating dissimilar fluorescent microscope hardware and peripherals into a single custom workstation, while providing all the tools needed to perform analysis of acquired images. Offers user friendly application modules for analysis such as cell signaling, cell counting, and protein expression.

tool

View all literature mentions

Odyssey CLx

A data analysis software developed to simplify and record data from fluorescent related assays such as Western Blots, EMSAs, and Western Assays. This software will consolidate all of the resulting data into one easy-to-track image, and thus removes the need for multiple exposures, as well as standardizing the resulting fluorescent bands without image saturation, blowout, or removed sensitivity. Odyssey CLx is capable of scanning multiple mini-blots, microplates, or slides at the same time.

tool

View all literature mentions