Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A novel synaptic junction preparation for the identification and characterization of cleft proteins.

PloS one | 2017

Identification of synaptic cleft components has been hampered by the lack of a suitable preparation enriched in synaptic junctions devoid of adjoining peripheral membranes. Prior strategies for the isolation of synaptic junctions, relying on detergents for the removal of peripheral membranes, resulted in substantial loss of membranes lining the cleft. Here, a novel, detergent-free method is described for the preparation of a synaptic junction (SJ) fraction, using phospholipase A2. Limited digestion of synaptic plasma membrane (SPM) fraction with phospholipase A2 followed by centrifugation over a sucrose cushion results in selective removal of membranes peripheral to the cleft while junctional membranes remain relatively intact as observed by electron microscopy. Enrichment in synaptic junctional structures and loss of membranes peripheral to the junctional area are further verified by demonstrating enrichment in PSD-95 and loss in mGluR5, respectively. The SJ fraction is enriched in neuroligins and neurexins, in agreement with immuno-electron microscopy data showing their selective localization to the junctional area. Among additional cell adhesion molecules tested, N-cadherin and specific isoforms of the SynCAM and SALM families also show marked enrichment in the SJ fraction, suggesting preferential localization at the synaptic cleft while others show little enrichment or decrease, suggesting that they are not restricted to or concentrated at the synaptic cleft. Treatment of the SJ fraction with glycosidases results in electrophoretic mobility shifts of all cell adhesion molecules tested, indicating glycosylation at the synaptic cleft. Biochemical and ultrastructural data presented indicate that the novel synaptic junction preparation can be used as a predictive tool for the identification and characterization of the components of the synaptic cleft.

Pubmed ID: 28362857 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NeuroMab (tool)

RRID:SCR_003086

A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.

View all literature mentions

Synaptic Systems (tool)

RRID:SCR_013612

An Antibody supplier

View all literature mentions

SD (tool)

RRID:RGD_70508

Rattus norvegicus with name SD from RGD.

View all literature mentions