Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Different Modes of Visual Integration in the Lateral Geniculate Nucleus Revealed by Single-Cell-Initiated Transsynaptic Tracing.

Neuron | Feb 22, 2017

The thalamus receives sensory input from different circuits in the periphery. How these sensory channels are integrated at the level of single thalamic cells is not well understood. We performed targeted single-cell-initiated transsynaptic tracing to label the retinal ganglion cells that provide input to individual principal cells in the mouse lateral geniculate nucleus (LGN). We identified three modes of sensory integration by single LGN cells. In the first, 1-5 ganglion cells of mostly the same type converged from one eye, indicating a relay mode. In the second, 6-36 ganglion cells of different types converged from one eye, revealing a combination mode. In the third, up to 91 ganglion cells converged from both eyes, revealing a binocular combination mode in which functionally specialized ipsilateral inputs joined broadly distributed contralateral inputs. Thus, the LGN employs at least three modes of visual input integration, each exhibiting different degrees of specialization.

Pubmed ID: 28231464 RIS Download

Mesh terms: Animals | Female | Geniculate Bodies | Mice, Inbred C57BL | Retina | Retinal Ganglion Cells | Synapses | Visual Cortex | Visual Fields | Visual Pathways

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Imaris

Interactive Vision In The Life SciencesCombining speed, precision and ease-of-use, Imaris provides an impressive range of capabilities for working with three-dimensional images. Move easily between simple and advanced 3D views. Use flexible editing and processing functions, such as interactive surface rendering and object slicing capabilities. And output to standard TIFF, Quicktime and AVI formats. Imaris accepts virtually all image formats that are used in confocal microscopy and many of those used in wide-field image acquisition.BitPlane, Inc. also releases the following companion products:- ImarisXT is a multi-functional two-way interface from Imaris to both classic programming languages and to Matlab.- Imaris MeasurementPro and Imaris Track provide the ability to segment and follow the movement of independent objects in a 3D image over time. Objects can either be Surface Objects or Spots, created automatically or manually.- ImarisColoc enables users to easily isolate, visualize, and quantify regional overlap in 3D and 4D images and automates the process of selecting colocalized image areas.

tool

View all literature mentions

FilamentTracer

A software application that automatically detects neurons (dendritic trees, axons and spines), microtubules, and other filament-like structures in 2D, 3D and 4D. Imaris FilamentTracer uses strategies that involve an optimal combination of automated analysis and operator decision. The choice of the best method is an essential element in optimizing efficiency. FilamentTracer allows the choice between four complementary tracing strategies ranging from manual to automatic and utilizes a creation wizard to easily guide the user through the creations steps. It has been specifically designed to deal with the complex problem of spine analysis over time.

tool

View all literature mentions

Addgene

A non-profit plasmid repository dedicated to helping scientists around the world share high-quality plasmids. They work with laboratories to assemble a high-quality library of published and useful plasmids and their associated cloning/sequence data for use in research and discovery. By linking plasmids with articles, scientists can always find data related to the materials they request. There is no cost to deposit plasmids to Addgene and it will store samples in triplicate (including one at an offsite backup facility), sequence key regions for validation, and handle the appropriate Material Transfer Agreements (MTAs) with institutions. Additionally, users can create a webpage that directs scientists to request plasmids. Material Transfer Agreements (MTAs) allow open exchange to occur because they offer intellectual property and liability protection for material providers. Institutions that have deposited materials at Addgene require a MTA for each transfer of material.

tool

View all literature mentions