Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A Neural Circuit for Auditory Dominance over Visual Perception.

Neuron | 2017

When conflicts occur during integration of visual and auditory information, one modality often dominates the other, but the underlying neural circuit mechanism remains unclear. Using auditory-visual discrimination tasks for head-fixed mice, we found that audition dominates vision in a process mediated by interaction between inputs from the primary visual (VC) and auditory (AC) cortices in the posterior parietal cortex (PTLp). Co-activation of the VC and AC suppresses VC-induced PTLp responses, leaving AC-induced responses. Furthermore, parvalbumin-positive (PV+) interneurons in the PTLp mainly receive AC inputs, and muscimol inactivation of the PTLp or optogenetic inhibition of its PV+ neurons abolishes auditory dominance in the resolution of cross-modal sensory conflicts without affecting either sensory perception. Conversely, optogenetic activation of PV+ neurons in the PTLp enhances the auditory dominance. Thus, our results demonstrate that AC input-specific feedforward inhibition of VC inputs in the PTLp is responsible for the auditory dominance during cross-modal integration.

Pubmed ID: 28162806 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Microsoft Excel (tool)

RRID:SCR_016137

Software application with data analysis tools and spreadsheet templates to track and visualize data. It is used to manage and process data.

View all literature mentions

Rabbit anti-parvalbumin (antibody)

RRID:AB_10000344

This polyclonal targets parvalbumin

View all literature mentions

Buzsaki Lab (software resource)

RRID:SCR_008020

Lab interested in understanding how neuronal circuitries of the brain support its cognitive capacities. Its goal is to provide rational, mechanistic explanations of cognitive functions at a descriptive level. In the lab''s view, the most promising area of cognitive faculties for scientific inquiry is memory, since it is a well-circumscribed term, can be studied in animals and substantial knowledge has accumulated on the molecular mechanisms of synaptic plasticity. Available software: * NeuroScope: NeuroScope can display local field potentials (EEG), neuronal spikes, behavioral events, as well as the position of the animal in the environment. It also features limited editing capabilities. * Klusters: Klusters is a powerful and easy-to-use cluster cutting application designed to help neurophysiologists sort action potentials from multiple neurons on groups of electrodes (e.g., tetrodes or multisite silicon probes). * KlustaKwik: KlustaKwik is a program for automatic cluster analysis, specifically designed to run fast on large data sets. * MATLAB m-files: A selection of MATLAB files developed in the lab.

View all literature mentions

MATLAB (software resource)

RRID:SCR_001622

Multi paradigm numerical computing environment and fourth generation programming language developed by MathWorks. Allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran and Python. Used to explore and visualize ideas and collaborate across disciplines including signal and image processing, communications, control systems, and computational finance.

View all literature mentions

Presentation (software resource)

RRID:SCR_002521

Stimulus delivery and experiment control program. Stimuli include auditory, 2D and 3D visual, and multimodal and experimental data include fMRI, ERP, MEG, psychophysics, eye movements, single neuron recording, and reaction time measures.

View all literature mentions

STOCK Viptm1(cre)Zjh/J (organism)

RRID:IMSR_JAX:010908

Mus musculus with name STOCK Viptm1(cre)Zjh/J from IMSR.

View all literature mentions

STOCK Ssttm2.1(cre)Zjh/J (organism)

RRID:IMSR_JAX:013044

Mus musculus with name STOCK Ssttm2.1(cre)Zjh/J from IMSR.

View all literature mentions

B6;129P2-Pvalbtm1(cre)Arbr/J (organism)

RRID:IMSR_JAX:008069

Mus musculus with name B6;129P2-Pvalbtm1(cre)Arbr/J from IMSR.

View all literature mentions

B6;129S-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J (organism)

RRID:IMSR_JAX:012569

Mus musculus with name B6;129S-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J from IMSR.

View all literature mentions

B6J.129S6(FVB)-Slc32a1tm2(cre)Lowl/MwarJ (organism)

RRID:IMSR_JAX:028862

Mus musculus with name B6J.129S6(FVB)-Slc32a1tm2(cre)Lowl/MwarJ from IMSR.

View all literature mentions

B6.Cg-Tg(Camk2a-cre)T29-1Stl/J (organism)

RRID:IMSR_JAX:005359

Mus musculus with name B6.Cg-Tg(Camk2a-cre)T29-1Stl/J from IMSR.

View all literature mentions

C57BL/6J (organism)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions

HEK293T (cell line)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions