Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SETD6 regulates NF-κB signaling in urothelial cell survival: Implications for bladder cancer.

Oncotarget | 2017

Non-muscle invasive bladder cancer has a high recurrence rate of 45-70%, progressing to muscle invasive disease in about 15% of those patients over a 5-year period. Administration of the mycobacterium, Bacillus Calmette-Guerin (BCG) that induces local inflammation resulting in tumor remission in responsive patients is frequently used for treatment. BCG-treated patients with NF-κB del/del genotype have an increased risk of recurrence suggesting an important role of NF-κB in bladder cancer. Since protein methyltransferases play critical roles in modulating chromatin structure and gene expression, we screened a focused array of epigenetic modification genes to identify differential expression between normal urothelial and bladder cancer cells. We found and validated high expression of the SET-domain-containing protein methyltransferase, SETD6. SETD6 monomethylates NF-κB-p65 at lysine 310. Our results show that primary urothelial cells and normal bladder tissue have nearly undetectable message and protein level of SETD6 that increases in transformed urothelial cells and is further increased in bladder cancer cells and tissues. Overexpression of SETD6 in transformed urothelial cells increased cell survival and colony formation while knockdown in cancer cells decreased both parameters. Luciferase reporter assays showed that SETD6 induced the canonical NF-κB signaling pathway. Further, the use of catalytic SETD6 and IκBα mutant shows that SETD6 positively regulates survival by affecting p65 message, protein level and its function as determined by increased expression of NF-κB target genes. Our findings suggest that SETD6 plays an important role in NF-κB regulation and may have an important role in NF-κB-mediated local inflammatory response following BCG treatment.

Pubmed ID: 28122346 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: R01 CA149516
  • Agency: NCI NIH HHS, United States
    Id: R03 CA136058
  • Agency: NCI NIH HHS, United States
    Id: T32 CA148724

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ATCC (tool)

RRID:SCR_001672

Global nonprofit biological resource center (BRC) and research organization that provides biological products, technical services and educational programs to private industry, government and academic organizations. Its mission is to acquire, authenticate, preserve, develop and distribute biological materials, information, technology, intellectual property and standards for the advancement and application of scientific knowledge. The primary purpose of ATCC is to use its resources and experience as a BRC to become the world leader in standard biological reference materials management, intellectual property resource management and translational research as applied to biomaterial development, standardization and certification. ATCC characterizes cell lines, bacteria, viruses, fungi and protozoa, as well as develops and evaluates assays and techniques for validating research resources and preserving and distributing biological materials to the public and private sector research communities.

View all literature mentions

UM-UC-3 (tool)

RRID:CVCL_1783

Cell line UM-UC-3 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions