Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina.

Cell stem cell | Mar 2, 2017

Loss of photoreceptors is a common endpoint in degenerative retinal diseases. Human pluripotent stem cells provide a potential source for photoreceptor replacement, but, even in mouse models, the efficiency and efficacy of transplantation-based repair remains poor. In this study, we examined the degree to which immune rejection contributes to these disappointing outcomes using an immunodeficient IL2 receptor γ (IL2rγ)-null mouse model. Our results show that prevention of cell rejection in the normal and degenerating retinal environment significantly improves long-term survival and integration of hESC-derived donor retinal cells. Transplanted cells are able to differentiate into mature photoreceptors expressing various opsins and can functionally integrate into congenitally blind mice. Our work suggests that even though the retina is often considered immune-privileged, suppression of host immune-mediated cell rejection may well be a useful approach for improving long-term integration of transplanted cells with a view to successful clinical outcomes.

Pubmed ID: 28089909 RIS Download

Mesh terms: Animals | Biomarkers | Blindness | Cell Survival | Human Embryonic Stem Cells | Humans | Immunosuppression | Interleukin Receptor Common gamma Subunit | Light | Mice | Mice, Mutant Strains | Mutation | Photoreceptor Cells, Vertebrate | Stem Cell Transplantation | Time Factors | Transplantation, Homologous

Research resources used in this publication

Research tools detected in this publication

Data used in this publication

None found

Associated grants

None

Antibody Registry (Reagent, Antibodies)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ZEN Digital Imaging for Light Microscopy

User interface software for Carl Zeiss light microscopy imaging systems. After selecting a fluorophore, ZEN applies the necessary settings to collect and organize data.

tool

View all literature mentions

Adobe Photoshop

Software for image processing, analysis, and editing. The software includes features such as touch capabilities, a customizable toolbar, 2D and 3D image merging, and Cloud access and options.

tool

View all literature mentions

PRISM

Tool that predicts interactions between transcription factors and their regulated genes from binding motifs. Understanding vertebrate development requires unraveling the cis-regulatory architecture of gene regulation. PRISM provides accurate genome-wide computational predictions of transcription factor binding sites for the human and mouse genomes, and integrates the predictions with GREAT to provide functional biological context. Together, accurate computational binding site prediction and GREAT produce for each transcription factor: 1. putative binding sites, 2. putative target genes, 3. putative biological roles of the transcription factor, and 4. putative cis-regulatory elements through which the factor regulates each target in each functional role.

tool

View all literature mentions