Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Rare Synaptogenesis-Impairing Mutations in SLITRK5 Are Associated with Obsessive Compulsive Disorder.

PloS one | 2017

Obsessive compulsive disorder (OCD) is substantially heritable, but few molecular genetic risk factors have been identified. Knockout mice lacking SLIT and NTRK-Like Family, Member 5 (SLITRK5) display OCD-like phenotypes including serotonin reuptake inhibitor-sensitive pathologic grooming, and corticostriatal dysfunction. Thus, mutations that impair SLITRK5 function may contribute to the genetic risk for OCD. We re-sequenced the protein-coding sequence of the human SLITRK5 gene (SLITRK5) in three hundred and seventy seven OCD subjects and compared rare non-synonymous mutations (RNMs) in that sample with similar mutations in the 1000 Genomes database. We also performed in silico assessments and in vitro functional synaptogenesis assays on the Slitrk5 mutations identified. We identified four RNM's among these OCD subjects. There were no significant differences in the prevalence or in silico effects of rare non-synonymous mutations in the OCD sample versus controls. Direct functional testing of recombinant SLITRK5 proteins found that all mutations identified in OCD subjects impaired synaptogenic activity whereas none of the pseudo-matched mutations identified in 1000 Genomes controls had significant effects on SLITRK5 function (Fisher's exact test P = 0.028). These results demonstrate that rare functional mutations in SLITRK5 contribute to the genetic risk for OCD in human populations. They also highlight the importance of biological characterization of allelic effects in understanding genotype-phenotype relationships as there were no statistical differences in overall prevalence or bioinformatically predicted effects of OCD case versus control mutations. Finally, these results converge with others to highlight the role of aberrant synaptic function in corticostriatal neurons in the pathophysiology of OCD.

Pubmed ID: 28085938 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCRR NIH HHS, United States
    Id: K23 RR015533
  • Agency: NIMH NIH HHS, United States
    Id: P50 MH079513
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS052819
  • Agency: NCATS NIH HHS, United States
    Id: UL1 TR002384

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Sequencher (tool)

RRID:SCR_001528

Software for Next-Generation DNA sequencing, Sanger DNA analysis, and RNA sequencing. It contains sequence analysis tools which include reference-guided alignments, de novo assembly, variant calling, and SNP analyses. It has integrated the Cufflinks suite for in-depth transcript analysis and differential gene expression of RNA-Seq data.

View all literature mentions

NIS-Elements (tool)

RRID:SCR_014329

Microscope imaging software suite used with Nikon products. NIS-Elements includes software applications for advanced and standard research, documentation, confocal microscopy, and high-content analysis.

View all literature mentions

HEK293 (tool)

RRID:CVCL_0045

Cell line HEK293 is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions