Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

CD40 Signaling in Graves Disease Is Mediated Through Canonical and Noncanonical Thyroidal Nuclear Factor κB Activation.

Endocrinology | 2017

CD40, a tumor necrosis factor receptor, is a major immune-modulating susceptibility gene for Graves disease (GD) as well as for a variety of other autoimmune diseases. Its broad association with autoimmunity underscores its paramount role in the development of a normal adaptive immune response, primarily in coordinating effective antigen presentation. The molecular pathways by which CD40 activation in the thyroid induces GD are unknown. In this study, we investigated whether NF-κB, a ubiquitious family of transcription factors, mediates the downstream effects of thyroid-specific CD40 activation. Cultured primary human thyrocytes, from patients with and without GD, underwent CD40 stimulation. Once stimulated, cytokines and transcription factors specific for either the canonical nuclear factor κB (NF-κB)1 pathway [interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α], which primarily recruits cells for innate immunity, or the noncanonical NF-κB2 pathway [B cell-activating factor of the TNF family, CC chemokine ligand (CCL)21], which directs B cell viability, were analyzed. Significant upregulation in the messenger RNA and protein levels of both canonical and noncanonical pathway cytokines was observed. Western blot analyses of the specific transcription factors for the NF-κB1 and NF-κB2 pathways (p65 and p100/p52, respectively) demonstrated that p65 is constitutively expressed. In contrast, CD40 stimulation robustly increased the expression of the NF-κB2 p52 transcription factor, and the upregulation was significantly more profound in the GD tissue than in the normal thyroid tissue. Our data show that CD40 activity in thyrocytes is prominently mediated via NF-κB and furthermore suggest that the NF-κB1 and NF-κB2 pathways both contribute to the triggering and the progression of GD.

Pubmed ID: 27929668 RIS Download

Associated grants

  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK061659
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK073681

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PCNA (PC10) Mouse mAb (antibody)

RRID:AB_2160343

This monoclonal targets PCNA

View all literature mentions

Phospho-NF-κB p65 (Ser536) (93H1) Rabbit mAb (antibody)

RRID:AB_331284

This monoclonal targets NF-KappaB p65, phospho (Ser536)

View all literature mentions

ImageJ (software resource)

RRID:SCR_003070

Open source Java based image processing software program designed for scientific multidimensional images. ImageJ has been transformed to ImageJ2 application to improve data engine to be sufficient to analyze modern datasets.

View all literature mentions

GraphPad Prism (software resource)

RRID:SCR_002798

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

View all literature mentions