Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Microbial Community Patterns Associated with Automated Teller Machine Keypads in New York City.

mSphere | 2016

In densely populated urban environments, the distribution of microbes and the drivers of microbial community assemblages are not well understood. In sprawling metropolitan habitats, the "urban microbiome" may represent a mix of human-associated and environmental taxa. Here we carried out a baseline study of automated teller machine (ATM) keypads in New York City (NYC). Our goal was to describe the biodiversity and biogeography of both prokaryotic and eukaryotic microbes in an urban setting while assessing the potential source of microbial assemblages on ATM keypads. Microbial swab samples were collected from three boroughs (Manhattan, Queens, and Brooklyn) during June and July 2014, followed by generation of Illumina MiSeq datasets for bacterial (16S rRNA) and eukaryotic (18S rRNA) marker genes. Downstream analysis was carried out in the QIIME pipeline, in conjunction with neighborhood metadata (ethnicity, population, age groups) from the NYC Open Data portal. Neither the 16S nor 18S rRNA datasets showed any clustering patterns related to geography or neighborhood demographics. Bacterial assemblages on ATM keypads were dominated by taxonomic groups known to be associated with human skin communities (Actinobacteria, Bacteroides, Firmicutes, and Proteobacteria), although SourceTracker analysis was unable to identify the source habitat for the majority of taxa. Eukaryotic assemblages were dominated by fungal taxa as well as by a low-diversity protist community containing both free-living and potentially pathogenic taxa (Toxoplasma, Trichomonas). Our results suggest that ATM keypads amalgamate microbial assemblages from different sources, including the human microbiome, eukaryotic food species, and potentially novel extremophilic taxa adapted to air or surfaces in the built environment. DNA obtained from ATM keypads may thus provide a record of both human behavior and environmental sources of microbes. IMPORTANCE Automated teller machine (ATM) keypads represent a specific and unexplored microhabitat for microbial communities. Although the number of built environment and urban microbial ecology studies has expanded greatly in recent years, the majority of research to date has focused on mass transit systems, city soils, and plumbing and ventilation systems in buildings. ATM surfaces, potentially retaining microbial signatures of human inhabitants, including both commensal taxa and pathogens, are interesting from both a biodiversity perspective and a public health perspective. By focusing on ATM keypads in different geographic areas of New York City with distinct population demographics, we aimed to characterize the diversity and distribution of both prokaryotic and eukaryotic microbes, thus making a unique contribution to the growing body of work focused on the "urban microbiome." In New York City, the surface area of urban surfaces in Manhattan far exceeds the geographic area of the island itself. We have only just begun to describe the vast array of microbial taxa that are likely to be present across diverse types of urban habitats.

Pubmed ID: 27904880 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FigShare (tool)

RRID:SCR_004328

Repository for all data, figures, theses, publications, posters, presentations, filesets, videos, datasets, negative data in a citable, shareable and discoverable manner with Digital Object Identifiers. Allows to upload any file format to be made visualisable in the browser so that figures, datasets, media, papers, posters, presentations and filesets can be disseminated in a way that the current scholarly publishing model does not allow. Features integration with ORCID, Symplectic Elements, can import items from Github and is a source tracked by Altmetric.com. Figshare gives users unlimited public space and 1GB of private storage space for free. Data are digitally preserved by CLOCKSS. Supported by Digital Science, a division of Macmillan Publishers Limited, as a community-based, open science project that retains its autonomy.

View all literature mentions

NCBI BioProject (tool)

RRID:SCR_004801

Database of biological data related to a single initiative, originating from a single organization or from a consortium. A BioProject record provides users a single place to find links to the diverse data types generated for that project. It is a searchable collection of complete and incomplete (in-progress) large-scale sequencing, assembly, annotation, and mapping projects for cellular organisms. Submissions are supported by a web-based Submission Portal. The database facilitates organization and classification of project data submitted to NCBI, EBI and DDBJ databases that captures descriptive information about research projects that result in high volume submissions to archival databases, ties together related data across multiple archives and serves as a central portal by which to inform users of data availability. BioProject records link to corresponding data stored in archival repositories. The BioProject resource is a redesigned, expanded, replacement of the NCBI Genome Project resource. The redesign adds tracking of several data elements including more precise information about a project''''s scope, material, and objectives. Genome Project identifiers are retained in the BioProject as the ID value for a record, and an Accession number has been added. Database content is exchanged with other members of the International Nucleotide Sequence Database Collaboration (INSDC). BioProject is accessible via FTP.

View all literature mentions

LEfSe (tool)

RRID:SCR_014609

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Algorithm for high-dimensional biomarker discovery and explanation that identifies genes, pathways, or taxa characterizing the differences between two or more biological conditions. The algorithm identifies features that are statistically different among biological classes, then performs additional tests to assess whether these differences are consistent with respect to expected biological behavior. Statistical significance and biological relevance are emphasized.

View all literature mentions

QIIME (tool)

RRID:SCR_008249

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 23,2023.Software package for comparison and analysis of microbial communities, primarily based on high-throughput amplicon sequencing data, but also supporting analysis of other types of data. QIMME analyzes and transforms raw sequencing data generated on Illumina or other platforms to publication quality graphics and statistics.

View all literature mentions

ChimeraSlayer (tool)

RRID:SCR_013283

A chimeric sequence detection utility, compatible with near-full length Sanger sequences and shorter 454-FLX sequences (~500 bp).

View all literature mentions

ggplot2 (tool)

RRID:SCR_014601

Open source software package for statistical programming language R to create plots based on grammar of graphics. Used for data visualization to break up graphs into semantic components such as scales and layers.

View all literature mentions