Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Regulation of endothelial migration and proliferation by ephrin-A1.

Cellular signalling | 2017

Endothelial migration and proliferation are fundamental processes in angiogenesis and wound healing of injured or inflamed vessels. The present study aimed to investigate the regulation of the Eph/ephrin-system during endothelial proliferation and the impact of the ligand ephrin-A1 on proliferation and migration of human umbilical venous (HUVEC) and arterial endothelial cells (HUAEC). Endothelial cells that underwent contact inhibition showed a massive induction of ephrin-A1. In contrast, an injury to a confluent endothelial layer, associated with induction of migration and proliferation, showed reduced ephrin-A1 levels. In addition, reducing ephrin-A1 expression by siRNA led to increased proliferation, whereas the overexpression of ephrin-A1 led to decreased proliferative activity. Due to the fact that wound healing is a combination of proliferation and migration, migration was investigated in detail. First, classical wound-healing assays showed increased wound closure in both ephrin-A1 silenced and overexpressing cells. Live-cell imaging enlightened the underlying differences. Silencing of ephrin-A1 led to a faster but more disorientated migration. In contrast, ephrin-A1 overexpression did not influence velocity of the cells, but the migration was more directed in comparison to the controls. Additional analysis of EphA2-silenced cells showed similar results in terms of proliferation and migration compared to ephrin-A1 silenced cells. Detailed analysis of EphA2 phosphorylation on ligand-dependent phospho-site (Y588) and autonomous activation site (S897) revealed a distinct phosphorylation pattern. Furthermore, the endothelial cells ceased to migrate when they came in contact with an ephrin-A1 coated surface. Using a baculoviral-mediated expression system, ephrin-A1 silencing and overexpression was shown to modulate the formation of focal adhesions. This implicates that ephrin-A1 is involved in changes of the actin cytoskeleton which explains the alterations in migratory actions, at least in part. In conclusion, ephrin-A1 expression is regulated by cellular density and is itself a critical determinant of endothelial proliferation. According to current knowledge, ephrin-A1 seems to be remarkably involved in elementary processes of endothelial migration like cellular polarization, migratory direction and speed. These data support the notion that ephrin-A1 plays a pivotal role in basal mechanisms of re-endothelialization.

Pubmed ID: 27742560 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


European Molecular Biology Laboratory (tool)

RRID:SCR_004473

Intergovernmental organisation funded by public research money from its member states in Europe. Groups and laboratories perform basic research in molecular biology and molecular medicine, training for scientists, students and visitors. Provides development of services, new instruments and methods, data and technology in its member states.

View all literature mentions

Quantity One 1-D Analysis Software (tool)

RRID:SCR_014280

Software used for Bio-Rad imaging systems to acquire, quantitate, and analyze a variety of data. The software allows automatic configuration of imaging systems with appropriate filters, lasers, LEDs, and other illumination sources. It also contains tools for automated analysis of tests and assays such as 1-D electrophoretic gels, western blots, and colony counts.

View all literature mentions