Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Efficient differentiation of murine embryonic stem cells requires the binding of CXXC finger protein 1 to DNA or methylated histone H3-Lys4.

Gene | 2016

Mammalian CXXC finger protein 1 (Cfp1) is a DNA-binding protein that is a component of the Setd1 histone methyltransferase complexes and is a critical epigenetic regulator of both histone and cytosine methylation. Murine embryonic stem (ES) cells lacking Cfp1 exhibit a loss of histone H3-Lys4 tri-methylation (H3K4me3) at many CpG islands, and a mis-localization of this epigenetic mark to heterochromatic sub-nuclear domains. Furthermore, these cells fail to undergo cellular differentiation in vitro. These defects are rescued upon introduction of a Cfp1-expression vector. Cfp1 contains an N-terminal plant homeodomain (PHD), a motif frequently observed in chromatin associated proteins that functions as a reader module of histone marks. Here, we report that the Cfp1 PHD domain directly and specifically binds to histone H3K4me1/me2/me3 marks. Introduction of individual mutations at key Cfp1 PHD residues (Y28, D44, or W49) ablates this histone interaction both in vitro and in vivo. The W49A point mutation does not affect the ability of Cfp1 to rescue appropriate restriction of histone H3K4me3 to euchromatic sub-nuclear domains or in vitro cellular differentiation in Cfp1-null ES cells. Similarly, a mutated form of Cfp1 that lacks DNA-binding activity (C169A) rescues in vitro cellular differentiation. However, rescue of Cfp1-null ES cells with a double mutant form of Cfp1 (W49A, C169A) results in partially defective in vitro differentiation. These data define the Cfp1 PHD domain as a reader of histone H3K4me marks and provide evidence that this activity is involved in the regulation of lineage commitment in ES cells.

Pubmed ID: 27590438 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MetaMorph Microscopy Automation and Image Analysis Software (tool)

RRID:SCR_002368

Software tool for automated microscope acquisition, device control, and image analysis. Used for integrating dissimilar fluorescent microscope hardware and peripherals into a single custom workstation, while providing all the tools needed to perform analysis of acquired images. Offers user friendly application modules for analysis such as cell signaling, cell counting, and protein expression.

View all literature mentions