Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

An Essential Role of INI1/hSNF5 Chromatin Remodeling Protein in HIV-1 Posttranscriptional Events and Gag/Gag-Pol Stability.

Journal of virology | 2016

INI1/hSNF5/SMARCB1/BAF47 is an HIV-specific integrase (IN)-binding protein that influences HIV-1 transcription and particle production. INI1 binds to SAP18 (Sin3a-associated protein, 18 kDa), and both INI1 and SAP18 are incorporated into HIV-1 virions. To determine the significance of INI1 and the INI1-SAP18 interaction during HIV-1 replication, we isolated a panel of SAP18-interaction-defective (SID)-INI1 mutants using a yeast reverse two-hybrid screen. The SID-INI1 mutants, which retained the ability to bind to IN, cMYC, and INI1 but were impaired for binding to SAP18, were tested for their effects on HIV-1 particle production. SID-INI1 dramatically reduced the intracellular Gag/Gag-Pol protein levels and, in addition, decreased viral particle production. The SID-INI1-mediated effects were less dramatic in trans complementation assays using IN deletion mutant viruses with Vpr-reverse transcriptase (RT)-IN. SID-INI1 did not inhibit long-terminal-repeat (LTR)-mediated transcription, but it marginally decreased the steady-state gag RNA levels, suggesting a posttranscriptional effect. Pulse-chase analysis indicated that in SID-INI1-expressing cells, the pr55Gag levels decreased rapidly. RNA interference analysis indicated that small hairpin RNA (shRNA)-mediated knockdown of INI1 reduced the intracellular Gag/Gag-Pol levels and further inhibited HIV-1 particle production. These results suggest that SID-INI1 mutants inhibit multiple stages of posttranscriptional events of HIV-1 replication, including intracellular Gag/Gag-Pol RNA and protein levels, which in turn inhibits assembly and particle production. Interfering INI1 leads to a decrease in particle production and Gag/Gag-Pol protein levels. Understanding the role of INI1 and SAP18 in HIV-1 replication is likely to provide novel insight into the stability of Gag/Gag-Pol, which may lead to the development of novel therapeutic strategies to inhibit HIV-1 late events.

Pubmed ID: 27558426 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIAID NIH HHS, United States
    Id: P30 AI051519
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM112520
  • Agency: NIAID NIH HHS, United States
    Id: R56 AI095171
  • Agency: NIAID NIH HHS, United States
    Id: T32 AI007501

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FISHER (tool)

RRID:SCR_009181

THIS RESOURCE IS NO LONGER IN SERVICE, documented on February 1st, 2022. Software application for genetic analysis of classical biometric traits like blood pressure or height that are caused by a combination of polygenic inheritance and complex environmental forces. (entry from Genetic Analysis Software)

View all literature mentions

Advanced BioScience Laboratories (tool)

RRID:SCR_012576

Advanced BioScience Laboratories, Inc (ABL) is a leading contract research and manufacturing organization, partnering with our clients to advance their vaccine and therapeutic development programs. Our unique combination of preclinical and clinical services provide the tools to address the scientific challenges encountered during any stage of product development. For preclinical studies, we utilize immunological, molecular, and cell-based assay platforms for candidate selection. We offer proof-of-concept in vivo studies with preclinical immunomonitoring and efficacy and potency testing. Once a clinical candidate is identified, ABL''s in-house cGMP suites are designed for single-use technologies accommodating a wide range of products, including mammalian- and microbial-based protein therapeutics as well as viral vectors and vaccines.

View all literature mentions

HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions