Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Three-dimensional synaptic analyses of mitral cell and external tufted cell dendrites in rat olfactory bulb glomeruli.

The Journal of comparative neurology | 2017

Recent studies have suggested that the two excitatory cell classes of the mammalian olfactory bulb, the mitral cells (MCs) and tufted cells (TCs), differ markedly in physiological responses. For example, TCs are more sensitive and broadly tuned to odors than MCs and also are much more sensitive to stimulation of olfactory sensory neurons (OSNs) in bulb slices. To examine the morphological bases for these differences, we performed quantitative ultrastructural analyses of glomeruli in rat olfactory bulb under conditions in which specific cells were labeled with biocytin and 3,3'-diaminobenzidine. Comparisons were made between MCs and external TCs (eTCs), which are a TC subtype in the glomerular layer with large, direct OSN signals and capable of mediating feedforward excitation of MCs. Three-dimensional analysis of labeled apical dendrites under an electron microscope revealed that MCs and eTCs in fact have similar densities of several chemical synapse types, including OSN inputs. OSN synapses also were distributed similarly, favoring a distal localization on both cells. Analysis of unlabeled putative MC dendrites further revealed gap junctions distributed uniformly along the apical dendrite and, on average, proximally with respect to OSN synapses. Our results suggest that the greater sensitivity of eTCs vs. MCs is due not to OSN synapse number or absolute location but rather to a conductance in the MC dendrite that is well positioned to attenuate excitatory signals passing to the cell soma. Functionally, such a mechanism could allow rapid and dynamic control of OSN-driven action potential firing in MCs through changes in gap junction properties. J. Comp. Neurol. 525:592-609, 2017. © 2016 Wiley Periodicals, Inc.

Pubmed ID: 27490056 RIS Download

Additional research tools detected in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIDCD NIH HHS, United States
    Id: R01 DC000566
  • Agency: NIDCD NIH HHS, United States
    Id: R01 DC006640

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Synapse Web Reconstruct (data processing software)

RRID:SCR_002716

A Windows (Win32) software application for montaging, aligning, tracing, measuring, and reconstructing objects from serial microscopic section images. The software is designed for microscopy in which section resolution is much less than section thickness, such as transmitted electron microscopy (EM) where the resolution is a few nanometers while the section thickness is many tens of nanometers. Reconstruct can easily handle series with hundreds of very large, high-resolution section images. It facilitates image cropping, scaling and alignment. Multiple images can be placed side-by-side to make a montage of a section from a mosaic of images. The alignment of adjacent sections can be rapidly compared by either blending the two sections or by flickering between them. Sections can be moved while blended. Reconstruct aids in the calibration of image size. Images taken at different magnifications can be combined, calibrated and aligned. Tools for tracing and editing of objects on sections are provided. Objects can be surfaced from the traces and previewed in an OpenGL-based 3D scene window. The 3D scene can be saved as a bitmap or as a VRML file.

View all literature mentions

Synapse Web Reconstruct (data processing software)

RRID:SCR_002716

A Windows (Win32) software application for montaging, aligning, tracing, measuring, and reconstructing objects from serial microscopic section images. The software is designed for microscopy in which section resolution is much less than section thickness, such as transmitted electron microscopy (EM) where the resolution is a few nanometers while the section thickness is many tens of nanometers. Reconstruct can easily handle series with hundreds of very large, high-resolution section images. It facilitates image cropping, scaling and alignment. Multiple images can be placed side-by-side to make a montage of a section from a mosaic of images. The alignment of adjacent sections can be rapidly compared by either blending the two sections or by flickering between them. Sections can be moved while blended. Reconstruct aids in the calibration of image size. Images taken at different magnifications can be combined, calibrated and aligned. Tools for tracing and editing of objects on sections are provided. Objects can be surfaced from the traces and previewed in an OpenGL-based 3D scene window. The 3D scene can be saved as a bitmap or as a VRML file.

View all literature mentions