Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Heterogeneity of astrocyte and NG2 cell insertion at the node of ranvier.

The node of Ranvier is a functionally important site on the myelinated axon where sodium channels are clustered and regeneration of action potentials occurs, allowing fast saltatory conduction of action potentials. Early ultrastructural studies have revealed the presence of "glia" or "astrocytes" at the nodes. NG2 cells, also known as oligodendrocyte precursor cells or polydendrocytes, which are a resident glial cell population in the mature mammalian central nervous system that is distinct from astrocytes, have also been shown to extend processes that contact the nodes. However, the prevalence of the two types of glia at the node has remained unknown. We have used specific cell surface markers to examine the association of NG2 cells and astrocytes with the nodes of Ranvier in the optic nerve, corpus callosum, and spinal cord of young adult mice or rats. We show that more than 95% of the nodes in all three regions contained astrocyte processes, while 33-49% of nodes contained NG2 cell processes. NG2 cell processes were associated more frequently with larger nodes. A few nodes were devoid of glial apposition. Electron microscopy and stimulated emission depletion (STED) super-resolution microscopy confirmed the presence of dual glial insertion at some nodes and further revealed that NG2 cell processes contacted the nodal membrane at discrete points, while astrocytes had broader processes that surrounded the nodes. The study provides the first systematic quantitative analysis of glial cell insertions at central nodes of Ranvier. J. Comp. Neurol. 525:535-552, 2017. © 2016 Wiley Periodicals, Inc.

Pubmed ID: 27448245 RIS Download

Mesh terms: Animals | Antigens | Astrocytes | Corpus Callosum | Fluorescent Antibody Technique | Mice, Inbred C57BL | Mice, Transgenic | Microscopy, Confocal | Microscopy, Immunoelectron | Neural Stem Cells | Oligodendroglia | Optic Nerve | Proteoglycans | Ranvier's Nodes | Rats, Sprague-Dawley | Spinal Cord | Thoracic Vertebrae

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NeuroMab

A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.

tool

View all literature mentions