Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Pho4 mediates phosphate acquisition in Candida albicans and is vital for stress resistance and metal homeostasis.

Molecular biology of the cell | 2016

During interactions with its mammalian host, the pathogenic yeast Candida albicans is exposed to a range of stresses such as superoxide radicals and cationic fluxes. Unexpectedly, a nonbiased screen of transcription factor deletion mutants revealed that the phosphate-responsive transcription factor Pho4 is vital for the resistance of C. albicans to these diverse stresses. RNA-Seq analysis indicated that Pho4 does not induce stress-protective genes directly. Instead, we show that loss of Pho4 affects metal cation toxicity, accumulation, and bioavailability. We demonstrate that pho4Δ cells are sensitive to metal and nonmetal cations and that Pho4-mediated polyphosphate synthesis mediates manganese resistance. Significantly, we show that Pho4 is important for mediating copper bioavailability to support the activity of the copper/zinc superoxide dismutase Sod1 and that loss of Sod1 activity contributes to the superoxide sensitivity of pho4Δ cells. Consistent with the key role of fungal stress responses in countering host phagocytic defenses, we also report that C. albicans pho4Δ cells are acutely sensitive to macrophage-mediated killing and display attenuated virulence in animal infection models. The novel connections between phosphate metabolism, metal homeostasis, and superoxide stress resistance presented in this study highlight the importance of metabolic adaptation in promoting C. albicans survival in the host.

Pubmed ID: 27385340 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Wellcome Trust, United Kingdom
    Id: 097377
  • Agency: Wellcome Trust, United Kingdom
    Id: 080088
  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
    Id: BB/K017365/1
  • Agency: Medical Research Council, United Kingdom
    Id: MR/N006364/1
  • Agency: Wellcome Trust, United Kingdom
    Id: 089930
  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
    Id: BB/F00513X/1
  • Agency: Cancer Research UK, United Kingdom
    Id: 13314
  • Agency: European Research Council, International
    Id: 249793
  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
    Id: BB/K016393/1
  • Agency: Medical Research Council, United Kingdom
    Id: MR/L001284/1
  • Agency: Wellcome Trust, United Kingdom
    Id: 098375

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Candida Genome Database (tool)

RRID:SCR_002036

Database of genetic and molecular biological information about Candida albicans. Contains information about genes and proteins, descriptions and classifications of their biological roles, molecular functions, and subcellular localizations, gene, protein, and chromosome sequence information, tools for analysis and comparison of sequences and links to literature information. Each CGD gene or open reading frame has an individual Locus Page. Genetic loci that are not tied to DNA sequence also have Locus Pages. Provides Gene Ontology, GO, to all its users. Three ontologies that comprise GO (Molecular Function, Cellular Component, and Biological Process) are used by multiple databases to annotate gene products, so that this common vocabulary can be used to compare gene products across species. Development of ontologies is ongoing in order to incorporate new information. Data submissions are welcome.

View all literature mentions

SAMTOOLS (tool)

RRID:SCR_002105

Original SAMTOOLS package has been split into three separate repositories including Samtools, BCFtools and HTSlib. Samtools for manipulating next generation sequencing data used for reading, writing, editing, indexing,viewing nucleotide alignments in SAM,BAM,CRAM format. BCFtools used for reading, writing BCF2,VCF, gVCF files and calling, filtering, summarising SNP and short indel sequence variants. HTSlib used for reading, writing high throughput sequencing data.

View all literature mentions

HTSeq (tool)

RRID:SCR_005514

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software Python package that provides infrastructure to process data from high-throughput sequencing assays. While the main purpose of HTSeq is to allow you to write your own analysis scripts, customized to your needs, there are also a couple of stand-alone scripts for common tasks that can be used without any Python knowledge.

View all literature mentions

ImageQuant (tool)

RRID:SCR_014246

Software for automatic general image analysis. It provides fully automatic analysis of 1-D gels including lane creation, background subtraction, band detection, molecular weight calibration, quantity calibration, and normalization. Editing tools are provided for cropping, rotating, and filtering images.

View all literature mentions

BALB/cAnNCrl (tool)

RRID:MGI:2683685

laboratory mouse with name BALB/cAnNCrl from MGI.

View all literature mentions