Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Genetic variants in chromatin-remodeling pathway associated with lung cancer risk in a Chinese population.

Gene | 2016

Chromatin remodeling complexes utilize the energy of ATP hydrolysis to remodel nucleosomes and have essential roles in transcriptional modulation. Increasing evidences indicate that these complexes directly interact with numerous proteins and regulate the formation of cancer. However, few studies reported the association of polymorphisms in chromatin remodeling genes and lung cancer. We hypothesized that variants in critical genes of chromatin remodeling pathway might contribute to the susceptibility of lung cancer. To validate this hypothesis, we systematically screened 40 polymorphisms in six key chromatin remodeling genes (SMARCA5, SMARCC2, SMARCD2, ARID1A, NR3C1 and SATB1) and evaluated them with a case-control study including 1341 cases and 1982 controls. Logistic regression revealed that four variants in NR3C1 and SATB1 were significantly associated with lung cancer risk after false discovery rate (FDR) correction [For NR3C1, rs9324921: odds ratio (OR)=1.23, P for FDR=0.029; rs12521436: OR=0.85, P for FDR=0.040; rs4912913: OR=1.17, P for FDR=0.040; For SATB1, rs6808523: OR=1.33, P for FDR=0.040]. Combing analysis presented a significant allele-dosage tendency for the number of risk alleles and lung cancer risk (Ptrend<0.001). Moreover, expression quantitative trait loci (eQTL) analysis revealed that these two genes were differently expressed between lung tumor and adjacent normal tissues in the database of The Cancer Genome Atlas (TCGA) (P=0.009 for rs6808523). These findings suggested that genetic variants in key chromatin remodeling genes may contribute to lung cancer risk in Chinese population. Further large and well-designed studies are warranted to validate our results.

Pubmed ID: 27179949 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


International HapMap Project (tool)

RRID:SCR_002846

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. A multi-country collaboration among scientists and funding agencies to develop a public resource where genetic similarities and differences in human beings are identified and catalogued. Using this information, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. All of the information generated by the Project will be released into the public domain. Their goal is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. HapMap project related data, software, and documentation include: bulk data on genotypes, frequencies, LD data, phasing data, allocated SNPs, recombination rates and hotspots, SNP assays, Perlegen amplicons, raw data, inferred genotypes, and mitochondrial and chrY haplogroups; Generic Genome Browser software; protocols and information on assay design, genotyping and other protocols used in the project; and documentation of samples/individuals and the XML format used in the project.

View all literature mentions

CRAN (tool)

RRID:SCR_003005

Network of ftp and web servers around world that store identical, up to date, versions of code and documentation for R. Package archive network for R programming language.

View all literature mentions

Haploview (tool)

RRID:SCR_003076

A Java based software tool designed to simplify and expedite the process of haplotype analysis by providing a common interface to several tasks relating to such analyses. Haploview currently allows users to examine block structures, generate haplotypes in these blocks, run association tests, and save the data in a number of formats. All functionalities are highly customizable. (entry from Genetic Analysis Software) * LD & haplotype block analysis * haplotype population frequency estimation * single SNP and haplotype association tests * permutation testing for association significance * implementation of Paul de Bakker's Tagger tag SNP selection algorithm. * automatic download of phased genotype data from HapMap * visualization and plotting of PLINK whole genome association results including advanced filtering options Haploview is fully compatible with data dumps from the HapMap project and the Perlegen Genotype Browser. It can analyze thousands of SNPs (tens of thousands in command line mode) in thousands of individuals. Note: Haploview is currently on a development and support freeze. The team is currently looking at a variety of options in order to provide support for the software. Haploview is an open source project hosted by SourceForge. The source can be downloaded at the SourceForge project site.

View all literature mentions

SNPinfo Web Server (tool)

RRID:SCR_010589

SNPinfo Web Server is a set of freely available web-based SNP selection tools where investigators can specify genes or linkage regions and select SNPs based on GWAS results, linkage disequilibrium (LD), and predicted functional characteristics of both coding and non-coding SNPs. The algorithm uses GWAS SNP P-value data and finds all SNPs in high LD with GWAS SNPs, so that selection is from a much larger set of SNPs than the GWAS itself. The program can also identify and choose tag SNPs for SNPs not in high LD with any GWAS SNP. We incorporate functional predictions of protein structure, gene regulation, splicing and miRNA binding, and consider whether the alternative alleles of a SNP are likely to have differential effects on function. Users can assign weights for different functional categories of SNPs to further tailor SNP selection. The program accounts for LD structure of different populations so that a GWAS study from one ethnic group can be used to choose SNPs for one or more other ethnic groups. SNP Selection and Functional Information *Candidate Gene SNP Selection (GenePipe):SNP selection for candidate genes based on Genome Wide Association Study (GWAS) results, functional SNP prediction and Linkage Disequilibrium (LD) information. *GWAS Functional SNP Selection (GenomePipe):Functional SNP selection from SNPs that are in high LD with GWAS SNPs *GWAS SNP Selection in Linkage Loci (LinkagePipe):GWAS SNP selection in candidate genomic regions (such as linkage loci) *LD TAG SNP Selection (TagSNP):LD tag SNP selection and visualization for single or multiple populations. Finalization of SNP list from various queries. *SNP Function Prediction (FuncPred): Querying SNP function predictions and ethnic-specific allele frequencies. *SNP Information in DNA Sequence (SNPseq):Visualization of SNP related information in the context of DNA sequence. Preparing DNA Sequence for PCR Primer Design considering SNP information. Detailed information of CpG region.

View all literature mentions

GenomeStudio (tool)

RRID:SCR_010973

Visualize and analyze data generated by all of Illumina''s platforms.

View all literature mentions