Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Regulation of Microtubule Assembly by Tau and not by Pin1.

Journal of molecular biology | 2016

The molecular mechanism by which the microtubule-associated protein (MAP) tau regulates the formation of microtubules (MTs) is poorly understood. The activity of tau is controlled via phosphorylation at specific Ser/Thr sites. Of those phosphorylation sites, 17 precede a proline, making them potential recognition sites for the peptidyl-prolyl isomerase Pin1. Pin1 binding and catalysis of phosphorylated tau at the AT180 epitope, which was implicated in Alzheimer's disease, has been reported to be crucial for restoring tau's ability to promote MT polymerization in vitro and in vivo [1]. Surprisingly, we discover that Pin1 does not promote phosphorylated tau-induced MT formation in vitro, refuting the commonly accepted model in which Pin1 binding and catalysis on the A180 epitope restores the function of the Alzheimer's associated phosphorylated tau in tubulin assembly [1, 2]. Using turbidity assays, time-resolved small angle X-ray scattering (SAXS), and time-resolved negative stain electron microscopy (EM), we investigate the mechanism of tau-mediated MT assembly and the role of the Thr231 and Ser235 phosphorylation on this process. We discover novel GTP-tubulin ring-shaped species, which are detectable in the earliest stage of tau-induced polymerization and may play a crucial role in the early nucleation phase of MT assembly. Finally, by NMR and SAXS experiments, we show that the tau molecules must be located on the surface of MTs and tubulin rings during the polymerization reaction. The interaction between tau and tubulin is multipartite, with a high affinity interaction of the four tubulin-binding repeats, and a weaker interaction with the proline-rich sequence and the termini of tau.

Pubmed ID: 26996940 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM100966

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


IMAGIC (tool)

RRID:SCR_014447

An image analysis software that can process spectra and other multi-dimensional data-sets. The software package is aimed at processing large data sets from (cryo-) electron microscopy, especially in the field of single particle analyses. This software can be used with light and raster-tunneling microscopes, computer tomographs, FT-IR spectrometers and other signal collecting devices. This resource provides three-dimensional data processing and angular reconstitution modules that allow the three-dimensional reconstruction with point-group symmetry from the two dimensional electron microscopy projections. These models aid in the analysis of the macromolecules.

View all literature mentions