Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Overexpression of heat shock factor 1 maintains TAR DNA binding protein 43 solubility via induction of inducible heat shock protein 70 in cultured cells.

Journal of neuroscience research | 2016

TAR DNA binding protein 43 (TDP-43) is a nuclear protein that has been shown to have altered homeostasis in the form of neuronal nuclear and cytoplasmic aggregates in some familial and almost all cases of sporadic amyotrophic lateral sclerosis as well as 51% of frontotemporal lobar degeneration and 57% of Alzheimer's disease cases. Heat shock proteins (HSPs), such as HSP70, recognize misfolded or aggregated proteins and refold, disaggregate, or turn them over and are upregulated by the master transcription factor heat shock factor 1 (HSF1). Here, we explore the effect of HSF1 overexpression on proteotoxic stress-related alterations in TDP-43 solubility, proteolytic processing, and cytotoxicity. HSF1 overexpression reduced TDP-43-positive puncta concomitantly with upregulating HSP70 and HSP90 protein levels. HSF1 overexpression or pharmacological activation sustained TDP-43 solubility and significantly reduced truncation of TDP-43 in response to inhibition of the proteasome with Z-Leu-Leu-Leu-al, and this was reversed by HSF1 inhibition. HSF1 activation conferred protection against toxicity associated with TDP-43 C-terminal fragments without globally increasing the activity of the ubiquitin proteasome system (UPS) while concomitantly reducing the induction of autophagy, suggesting that HSF1 protection is an early event. In support of this, inhibition of HSP70 ATPase activity further reduced TDP-43 solubility. HSF1 knockout significantly increased TDP-43 insolubility and accelerated TDP-43 fragmentation in response to proteotoxic stress. Overall, this study shows that HSF1 overexpression protects against TDP-43 pathology by upregulation of chaperones, especially HSP70, rather than enhancing autophagy or the UPS during times of proteotoxic stress. © 2016 Wiley Periodicals, Inc.

Pubmed ID: 26994698 RIS Download

Additional research tools detected in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Anti-Apg7 antibody [EPR6251] (antibody)

RRID:AB_2532126

This monoclonal targets Human Apg7 protein

View all literature mentions

caspase-3 Antibody (H-277) (antibody)

RRID:AB_637828

This polyclonal targets caspase-3

View all literature mentions

IRDye 800CW Goat anti-Rabbit IgG (antibody)

RRID:AB_621843

This polyclonal secondary targets IgG

View all literature mentions

LC3B Antibody (antibody)

RRID:AB_10987450

This polyclonal targets LC3B

View all literature mentions

Anti-Apg7 antibody [EPR6251] (antibody)

RRID:AB_2532126

This monoclonal targets Human Apg7 protein

View all literature mentions