Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

PCP Signaling between Migrating Neurons and their Planar-Polarized Neuroepithelial Environment Controls Filopodial Dynamics and Directional Migration.

PLoS genetics | 2016

The planar cell polarity (PCP) pathway is a cell-contact mediated mechanism for transmitting polarity information between neighboring cells. PCP "core components" (Vangl, Fz, Pk, Dsh, and Celsr) are essential for a number of cell migratory events including the posterior migration of facial branchiomotor neurons (FBMNs) in the plane of the hindbrain neuroepithelium in zebrafish and mice. While the mechanism by which PCP signaling polarizes static epithelial cells is well understood, how PCP signaling controls highly dynamic processes like neuronal migration remains an important outstanding question given that PCP components have been implicated in a range of directed cell movements, particularly during vertebrate development. Here, by systematically disrupting PCP signaling in a rhombomere-restricted manner we show that PCP signaling is required both within FBMNs and the hindbrain rhombomere 4 environment at the time when they initiate their migration. Correspondingly, we demonstrate planar polarized localization of PCP core components Vangl2 and Fzd3a in the hindbrain neuroepithelium, and transient localization of Vangl2 at the tips of retracting FBMN filopodia. Using high-resolution timelapse imaging of FBMNs in genetic chimeras we uncover opposing cell-autonomous and non-cell-autonomous functions for Fzd3a and Vangl2 in regulating FBMN protrusive activity. Within FBMNs, Fzd3a is required to stabilize filopodia while Vangl2 has an antagonistic, destabilizing role. However, in the migratory environment Fzd3a acts to destabilize FBMN filopodia while Vangl2 has a stabilizing role. Together, our findings suggest a model in which PCP signaling between the planar polarized neuroepithelial environment and FBMNs directs migration by the selective stabilization of FBMN filopodia.

Pubmed ID: 26990447 RIS Download

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: R01 NS082567
  • Agency: NICHD NIH HHS, United States
    Id: T32 HD007183
  • Agency: NICHD NIH HHS, United States
    Id: T32HD007183

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


National Institutes of Health (tool)

RRID:SCR_011417

NIH is the nations medical research agency - making important medical discoveries that improve health and save lives. The National Institutes of Health (NIH), a part of the U.S. Department of Health and Human Services, is the primary Federal agency for conducting and supporting medical research. Helping to lead the way toward important medical discoveries that improve peoples health and save lives, NIH scientists investigate ways to prevent disease as well as the causes, treatments, and even cures for common and rare diseases. NIH research impacts: * child and teen health, * men's health, * minority health, * seniors' health, * women's health, and * wellness and lifestyle issues. Composed of 27 Institutes and Centers, the NIH provides leadership and financial support to researchers in every state and throughout the world.

View all literature mentions

Jackson Laboratory (tool)

RRID:SCR_004633

An independent, nonprofit organization focused on mammalian genetics research to advance human health. Their mission is to discover the genetic basis for preventing, treating, and curing human disease, and to enable research for the global biomedical community. Jackson Laboratory breeds and manages colonies of mice as resources for other research institutions and laboratories, along with providing software and techniques. Jackson Lab also conducts genetic research and provides educational material for various educational levels.

View all literature mentions

FilamentTracer (tool)

RRID:SCR_007366

A software application that automatically detects neurons (dendritic trees, axons and spines), microtubules, and other filament-like structures in 2D, 3D and 4D. Imaris FilamentTracer uses strategies that involve an optimal combination of automated analysis and operator decision. The choice of the best method is an essential element in optimizing efficiency. FilamentTracer allows the choice between four complementary tracing strategies ranging from manual to automatic and utilizes a creation wizard to easily guide the user through the creations steps. It has been specifically designed to deal with the complex problem of spine analysis over time.

View all literature mentions

Imaris (tool)

RRID:SCR_007370

Imaris provides range of capabilities for working with three dimensional images. Uses flexible editing and processing functions, such as interactive surface rendering and object slicing capabilities. And output to standard TIFF, Quicktime and AVI formats. Imaris accepts virtually all image formats that are used in confocal microscopy and many of those used in wide-field image acquisition.

View all literature mentions

Adobe Illustrator (tool)

RRID:SCR_010279

Vector graphics software to create digital graphics, illustrations, and typography for several types of media: print, web, interactive, video, and mobile.

View all literature mentions

Zeiss Zen Lite (tool)

RRID:SCR_023747

Software tool for basic image acquisition and analysis. Zeiss ZEN microscopy software to control of axiocam microscope cameras, image transformation and measurements, image processing, image alignment for correlative microscopy, various visualization options.

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions

prickle1bfh122/fh122 (organism)

RRID:ZFIN_ZDB-GENO-170328-2

Danio rerio with name prickle1bfh122/fh122 from ZFIN.

View all literature mentions

prickle1bfh122/fh122 (organism)

RRID:ZFIN_ZDB-GENO-170328-2

Danio rerio with name prickle1bfh122/fh122 from ZFIN.

View all literature mentions