Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Chronic consumption of a western diet induces robust glial activation in aging mice and in a mouse model of Alzheimer's disease.

Scientific reports | 2016

Studies have assessed individual components of a western diet, but no study has assessed the long-term, cumulative effects of a western diet on aging and Alzheimer's disease (AD). Therefore, we have formulated the first western-style diet that mimics the fat, carbohydrate, protein, vitamin and mineral levels of western diets. This diet was fed to aging C57BL/6J (B6) mice to identify phenotypes that may increase susceptibility to AD, and to APP/PS1 mice, a mouse model of AD, to determine the effects of the diet in AD. Astrocytosis and microglia/monocyte activation were dramatically increased in response to diet and was further increased in APP/PS1 mice fed the western diet. This increase in glial responses was associated with increased plaque burden in the hippocampus. Interestingly, given recent studies highlighting the importance of TREM2 in microglia/monocytes in AD susceptibility and progression, B6 and APP/PS1 mice fed the western diet showed significant increases TREM2+ microglia/monocytes. Therefore, an increase in TREM2+ microglia/monocytes may underlie the increased risk from a western diet to age-related neurodegenerative diseases such as Alzheimer's disease. This study lays the foundation to fully investigate the impact of a western diet on glial responses in aging and Alzheimer's disease.

Pubmed ID: 26888450 RIS Download

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NEI NIH HHS, United States
    Id: R01 EY011721
  • Agency: NEI NIH HHS, United States
    Id: R29 EY011721
  • Agency: Howard Hughes Medical Institute, United States
  • Agency: NEI NIH HHS, United States
    Id: R01 EY021525
  • Agency: NEI NIH HHS, United States
    Id: EY021525
  • Agency: NEI NIH HHS, United States
    Id: EY011721

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Jackson Laboratory (tool)

RRID:SCR_004633

An independent, nonprofit organization focused on mammalian genetics research to advance human health. Their mission is to discover the genetic basis for preventing, treating, and curing human disease, and to enable research for the global biomedical community. Jackson Laboratory breeds and manages colonies of mice as resources for other research institutions and laboratories, along with providing software and techniques. Jackson Lab also conducts genetic research and provides educational material for various educational levels.

View all literature mentions

Covance (tool)

RRID:SCR_001224

A contract research organization providing drug development and animal testing services. Under the name Covance Research Products Inc., based in Denver, Pennsylvania, the company also deals in the import, breeding and sale of laboratory animals. It breeds dogs, rabbits, guinea pigs, non-human primates, and pigs, and runs the largest non-human primate laboratory in Germany. (Wikipedia)

View all literature mentions

C57BL/6J (organism)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions

B6.Cg-Tg(APPswe,PSEN1dE9)85Dbo/Mmjax (organism)

RRID:MMRRC_034832-JAX

Mus musculus with name B6.Cg-Tg(APPswe,PSEN1dE9)85Dbo/Mmjax from MMRRC.

View all literature mentions