Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

On the regulatory importance of 27-hydroxycholesterol in mouse liver.

The Journal of steroid biochemistry and molecular biology | 2017

27-Hydroxycholesterol (27OH) is a strong suppressor of cholesterol synthesis and a weak activator of LXR in vitro. The regulatory importance of 27OH in vivo is controversial. Here we utilized male mice with increased levels of 27OH either due to increased production (CYP27A1 transgenic mice) or reduced metabolism (Cyp7b1-/- mice). We also used mice lacking 27OH due to a knockout of Cyp27a1. The latter mice were treated with cholic acid to compensate for reduced bile acid synthesis. The effects of the different levels of 27OH on Srebp- and other LXR-regulated genes in the liver were investigated. In the liver of CYP27tg mice we found a modest increase of the mRNA levels corresponding to the LXR target genes Cyp7b1 and Abca1. A number of other LXR-regulated genes were not affected. The effect on Abca1 mRNA was not seen in the liver of Cyp7b1-/- mice. There were little or no effects on cholesterol synthesis. In the liver of the Cyp27-/- mice treated with 0.025% cholic acid there was no significant effect of the knockout on the LXR target genes. In a previous work triple-knockout mice deficient in the biosynthesis of 24S-hydroxycholesterol, 25-hydroxycholesterol and 27OH were shown to have impaired response to dietary cholesterol, suggesting side-chain oxidized oxysterols to be mediators in cholesterol-induced effects on LXR target genes at a transcriptional level (Chen W. et al., Cell Metab. 5 (2007) 73-79). The hydroxylated oxysterol responsible for the effect was not defined. We show here that treatment of wildtype mice with dietary cholesterol under the same conditions as in the above study induced the LXR target genes Lpl, Abcg8 and Srebp1c in wild type mice but failed to activate the same genes in mice lacking 27-hydroxycholesterol due to a knockout of Cyp27. We failed to demonstrate the above effects at the protein level (Abcg8) or at the activity level (Lpl). The results suggest that 27OH is not an important regulator of Srebp- or LXR regulated genes under basal conditions in mouse liver. On the other hand 27OH appears to mediate cholesterol-induced effects on some LXR target genes at a transcriptional level under some in vivo conditions.

Pubmed ID: 26851362 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Charles River Laboratories (tool)

RRID:SCR_003792

Commercial organism provider selling mice, rats and other model animals. American corporation specializing in a variety of pre-clinical and clinical laboratory services for the pharmaceutical, medical device and biotechnology industries. It also supplies assorted biomedical products and research and development outsourcing services for use in the pharmaceutical industry. (Wikipedia)

View all literature mentions

Novus Biologicals (tool)

RRID:SCR_004286

Commercial antibody vendor which supplies antibodies and other products to life science researchers.

View all literature mentions