Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model.

PloS one | 2016

Tight regulation of cadherin-mediated intercellular adhesions is critical to both tissue morphogenesis during development and tissue homeostasis in adults. Cell surface expression of the cadherin-catenin complex is often directly correlated with the level of adhesion, however, examples exist where cadherin appears to be inactive and cells are completely non-adhesive. The state of p120-catenin phosphorylation has been implicated in regulating the adhesive activity of E-cadherin but the mechanism is currently unclear. We have found that destabilization of the microtubule cytoskeleton, independent of microtubule plus-end dynamics, dephosphorylates p120-catenin and activates E-cadherin adhesion in Colo 205 cells. Through chemical screening, we have also identified several kinases as potential regulators of E-cadherin adhesive activity. Analysis of several p120-catenin phosphomutants suggests that gross dephosphorylation of p120-catenin rather than that of specific amino acids may trigger E-cadherin adhesion. Uncoupling p120-catenin binding to E-cadherin at the membrane causes constitutive adhesion in Colo 205 cells, further supporting an inhibitory role of phosphorylated p120-catenin on E-cadherin activity.

Pubmed ID: 26845024 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM106659
  • Agency: NIDDK NIH HHS, United States
    Id: T32 DK007769
  • Agency: NIGMS NIH HHS, United States
    Id: R01GM106659
  • Agency: NIDDK NIH HHS, United States
    Id: 5T32DK007769

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Tronolab (tool)

RRID:SCR_008580

Retroelements constitute important evolutionary forces for the genome of higher organisms, yet their uncontrolled spread, whether from endogenous loci or within the context of viral infections, can cause diseases such as cancer, hepatitis and AIDS. Correspondingly, a variety of host-encoded activities limit this process, belonging to a line of defense commonly called intrinsic or innate immunity, which notably contributes to taming endogenous retroelements and to restricting the cross-species transmission of retroviruses. Our work aims at characterizing the relationship between retroelements and their hosts, which has recently led us to become more generally interested in epigenetic mechanisms regulating the expression of mammalian genomes.

View all literature mentions

National Institutes of Health (tool)

RRID:SCR_011417

NIH is the nations medical research agency - making important medical discoveries that improve health and save lives. The National Institutes of Health (NIH), a part of the U.S. Department of Health and Human Services, is the primary Federal agency for conducting and supporting medical research. Helping to lead the way toward important medical discoveries that improve peoples health and save lives, NIH scientists investigate ways to prevent disease as well as the causes, treatments, and even cures for common and rare diseases. NIH research impacts: * child and teen health, * men's health, * minority health, * seniors' health, * women's health, and * wellness and lifestyle issues. Composed of 27 Institutes and Centers, the NIH provides leadership and financial support to researchers in every state and throughout the world.

View all literature mentions

Addgene (tool)

RRID:SCR_002037

Non-profit plasmid repository dedicated to helping scientists around the world share high-quality plasmids. Facilitates archiving and distributing DNA-based research reagents and associated data to scientists worldwide. Repository contains over 65,000 plasmids, including special collections on CRISPR, fluorescent proteins, and ready-to-use viral preparations. There is no cost for scientists to deposit plasmids, which saves time and money associated with shipping plasmids themselves. All plasmids are fully sequenced for validation and sequencing data is openly available. We handle the appropriate Material Transfer Agreements (MTA) with institutions, facilitating open exchange and offering intellectual property and liability protection for depositing scientists. Furthermore, we curate free educational resources for the scientific community including a blog, eBooks, video protocols, and detailed molecular biology resources.

View all literature mentions