Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

PSAMM: A Portable System for the Analysis of Metabolic Models.

PLoS computational biology | 2016

The genome-scale models of metabolic networks have been broadly applied in phenotype prediction, evolutionary reconstruction, community functional analysis, and metabolic engineering. Despite the development of tools that support individual steps along the modeling procedure, it is still difficult to associate mathematical simulation results with the annotation and biological interpretation of metabolic models. In order to solve this problem, here we developed a Portable System for the Analysis of Metabolic Models (PSAMM), a new open-source software package that supports the integration of heterogeneous metadata in model annotations and provides a user-friendly interface for the analysis of metabolic models. PSAMM is independent of paid software environments like MATLAB, and all its dependencies are freely available for academic users. Compared to existing tools, PSAMM significantly reduced the running time of constraint-based analysis and enabled flexible settings of simulation parameters using simple one-line commands. The integration of heterogeneous, model-specific annotation information in PSAMM is achieved with a novel format of YAML-based model representation, which has several advantages, such as providing a modular organization of model components and simulation settings, enabling model version tracking, and permitting the integration of multiple simulation problems. PSAMM also includes a number of quality checking procedures to examine stoichiometric balance and to identify blocked reactions. Applying PSAMM to 57 models collected from current literature, we demonstrated how the software can be used for managing and simulating metabolic models. We identified a number of common inconsistencies in existing models and constructed an updated model repository to document the resolution of these inconsistencies.

Pubmed ID: 26828591 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: P20 GM103430
  • Agency: NIGMS NIH HHS, United States
    Id: 2 P20 GM103430

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


RAVEN (tool)

RRID:SCR_001937

Tool to search for putative regulatory genetic variation in your favorite gene. Single nucleotide polymorphisms (SNPs) (from dbSNP and user defined) are analyzed for overlap with potential transcription factor binding sites (TFBS) and phylogenetic footprinting using UCSC phastCons scores from multiple alignments of 8 vertebrate genomes.

View all literature mentions

COBrA (tool)

RRID:SCR_005677

COBrA is a Java-based ontology editor for bio-ontologies that distinguishes itself from other editors by supporting the linking of concepts between two ontologies, and providing sophisticated analysis and verification functions. In addition to the Gene Ontology and Open Biology Ontologies formats, COBrA can import and export ontologies in the Semantic Web formats RDF, RDFS and OWL. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

View all literature mentions

NumPy (tool)

RRID:SCR_008633

NumPy is the fundamental package needed for scientific computing with Python. It contains among other things: * a powerful N-dimensional array object * sophisticated (broadcasting) functions * tools for integrating C/C and Fortran code * useful linear algebra, Fourier transform, and random number capabilities. Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases. Sponsored by ENTHOUGHT

View all literature mentions