Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The LGN protein promotes planar proliferative divisions in the neocortex but apicobasal asymmetric terminal divisions in the retina.

Development (Cambridge, England) | 2016

Cell division orientation is crucial to control segregation of polarized fate determinants in the daughter cells to produce symmetric or asymmetric fate outcomes. Most studies in vertebrates have focused on the role of mitotic spindle orientation in proliferative asymmetric divisions and it remains unclear whether altering spindle orientation is required for the production of asymmetric fates in differentiative terminal divisions. Here, we show that the GoLoco motif protein LGN, which interacts with Gαi to control apicobasal division orientation in Drosophila neuroblasts, is excluded from the apical domain of retinal progenitors undergoing planar divisions, but not in those undergoing apicobasal divisions. Inactivation of LGN reduces the number of apicobasal divisions in mouse retinal progenitors, whereas it conversely increases these divisions in cortical progenitors. Although LGN inactivation increases the number of progenitors outside the ventricular zone in the developing neocortex, it has no effect on the position or number of progenitors in the retina. Retinal progenitor cell lineage analysis in LGN mutant mice, however, shows an increase in symmetric terminal divisions producing two photoreceptors, at the expense of asymmetric terminal divisions producing a photoreceptor and a bipolar or amacrine cell. Similarly, inactivating Gαi decreases asymmetric terminal divisions, suggesting that LGN function with Gαi to control division orientation in retinal progenitors. Together, these results show a context-dependent function for LGN and indicate that apicobasal divisions are not involved in proliferative asymmetric divisions in the mouse retina, but are instead essential to generate binary fates at terminal divisions.

Pubmed ID: 26755700 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: Canadian Institutes of Health Research, Canada

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


International Mouse Phenotyping Consortium (IMPC) (tool)

RRID:SCR_006158

Center that produces knockout mice and carries out high-throughput phenotyping of each line in order to determine function of every gene in mouse genome. These mice will be preserved in repositories and made available to scientific community representing valuable resource for basic scientific research as well as generating new models for human diseases.

View all literature mentions