Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases.

PLoS neglected tropical diseases | 2016

Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature.

Pubmed ID: 26735851 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: FIC NIH HHS, United States
    Id: D43 TW007888
  • Agency: FIC NIH HHS, United States
    Id: D43TW007888

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


TDR Targets Database (tool)

RRID:SCR_007963

This database functions both as a website where researchers can look for information on their targets of interest; and as a tool for prioritization of targets in whole genomes. Using the database as a tool, researchers can quickly prioritize a genome of interest by performing any number of individual queries on a species of interest, then assigning numerical weights to each query (in the history page) to finally obtain a ranked list of genes by combining the weighted queries. This site is part of a WHO/TDR project seeking to exploit the availability of diverse datasets to facilitate the identification and prioritization of drug targets in pathogens causing neglected diseases.

View all literature mentions

InterPro (tool)

RRID:SCR_006695

Service providing functional analysis of proteins by classifying them into families and predicting domains and important sites. They combine protein signatures from a number of member databases into a single searchable resource, capitalizing on their individual strengths to produce a powerful integrated database and diagnostic tool. This integrated database of predictive protein signatures is used for the classification and automatic annotation of proteins and genomes. InterPro classifies sequences at superfamily, family and subfamily levels, predicting the occurrence of functional domains, repeats and important sites. InterPro adds in-depth annotation, including GO terms, to the protein signatures. You can access the data programmatically, via Web Services. The member databases use a number of approaches: # ProDom: provider of sequence-clusters built from UniProtKB using PSI-BLAST. # PROSITE patterns: provider of simple regular expressions. # PROSITE and HAMAP profiles: provide sequence matrices. # PRINTS provider of fingerprints, which are groups of aligned, un-weighted Position Specific Sequence Matrices (PSSMs). # PANTHER, PIRSF, Pfam, SMART, TIGRFAMs, Gene3D and SUPERFAMILY: are providers of hidden Markov models (HMMs). Your contributions are welcome. You are encouraged to use the ''''Add your annotation'''' button on InterPro entry pages to suggest updated or improved annotation for individual InterPro entries.

View all literature mentions

PubChem (tool)

RRID:SCR_004284

Collection of information about chemical structures and biological properties of small molecules and siRNA reagents hosted by the National Center for Biotechnology Information (NCBI).

View all literature mentions

Pfam (tool)

RRID:SCR_004726

A database of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). Users can analyze protein sequences for Pfam matches, view Pfam family annotation and alignments, see groups of related families, look at the domain organization of a protein sequence, find the domains on a PDB structure, and query Pfam by keywords. There are two components to Pfam: Pfam-A and Pfam-B. Pfam-A entries are high quality, manually curated families that may automatically generate a supplement using the ADDA database. These automatically generated entries are called Pfam-B. Although of lower quality, Pfam-B families can be useful for identifying functionally conserved regions when no Pfam-A entries are found. Pfam also generates higher-level groupings of related families, known as clans (collections of Pfam-A entries which are related by similarity of sequence, structure or profile-HMM).

View all literature mentions

ChEMBL (tool)

RRID:SCR_014042

Collection of bioactive drug-like small molecules that contains 2D structures, calculated properties and abstracted bioactivities. Used for drug discovery and chemical biology research. Clinical progress of new compounds is continuously integrated into the database.

View all literature mentions