Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Reducing Lissencephaly-1 levels augments mitochondrial transport and has a protective effect in adult Drosophila neurons.

Journal of cell science | 2016

Defective transport of mitochondria in axons is implicated in the pathogenesis of several age-associated neurodegenerative diseases. However, the regulation and function of axonal mitochondrial motility during normal ageing is poorly understood. Here, we use novel imaging procedures to characterise axonal transport of these organelles in the adult Drosophila wing nerve. During early adult life there is a boost and progressive decline in the proportion of mitochondria that are motile, which is not due to general changes in cargo transport. Experimental inhibition of the mitochondrial transport machinery specifically in adulthood accelerates the appearance of focal protein accumulations in ageing axons, which is suggestive of defects in protein homeostasis. Unexpectedly, lowering levels of Lissencephaly-1 (Lis1), a dynein motor co-factor, augments axonal mitochondrial transport in ageing wing neurons. Lis1 mutations suppress focal protein accumulations in ageing neurons, including those caused by interfering with the mitochondrial transport machinery. Our data provide new insights into the dynamics of mitochondrial motility in adult neurons in vivo, identify Lis1 as a negative regulator of transport of these organelles, and provide evidence of a link between mitochondrial movement and neuronal protein homeostasis.

Pubmed ID: 26598558 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Medical Research Council, United Kingdom
    Id: MC_U105178790
  • Agency: Medical Research Council, United Kingdom
    Id: U105178790

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Drosophila Genomics Resource Center (tool)

RRID:SCR_002845

Serves Drosophila research community by collecting and distributing DNA clones and vectors; collecting and distributing Drosophila cell lines; developing and testing genomics technologies for use in Drosophila and assisting members of the research community in their use.

View all literature mentions

S2R+ (tool)

RRID:CVCL_Z831

Cell line S2R+ is a Spontaneously immortalized cell line with a species of origin Drosophila melanogaster (Fruit fly)

View all literature mentions

Oregon-R(R) (tool)

RRID:DGGR_109612

Drosophila melanogaster with name Oregon-R(R) from DGGR.

View all literature mentions