Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Organization of the sleep-related neural systems in the brain of the river hippopotamus (Hippopotamus amphibius): A most unusual cetartiodactyl species.

The Journal of comparative neurology | 2016

This study provides the first systematic analysis of the nuclear organization of the neural systems related to sleep and wake in the basal forebrain, diencephalon, midbrain, and pons of the river hippopotamus, one of the closest extant terrestrial relatives of the cetaceans. All nuclei involved in sleep regulation and control found in other mammals, including cetaceans, were present in the river hippopotamus, with no specific nuclei being absent, but novel features of the cholinergic system, including novel nuclei, were present. This qualitative similarity relates to the cholinergic, noradrenergic, serotonergic, and orexinergic systems and is extended to the γ-aminobutyric acid (GABA)ergic elements of these nuclei. Quantitative analysis reveals that the numbers of pontine cholinergic (259,578) and noradrenergic (127,752) neurons, and hypothalamic orexinergic neurons (68,398) are markedly higher than in other large-brained mammals. These features, along with novel cholinergic nuclei in the intralaminar nuclei of the dorsal thalamus and the ventral tegmental area of the midbrain, as well as a major expansion of the hypothalamic cholinergic nuclei and a large laterodorsal tegmental nucleus of the pons that has both parvocellular and magnocellular cholinergic neurons, indicates an unusual sleep phenomenology for the hippopotamus. Our observations indicate that the hippopotamus is likely to be a bihemispheric sleeper that expresses REM sleep. The novel features of the cholinergic system suggest the presence of an undescribed sleep state in the hippopotamus, as well as the possibility that this animal could, more rapidly than other mammals, switch cortical electroencephalographic activity from one state to another. J. Comp. Neurol. 524:2036-2058, 2016. © 2016 Wiley Periodicals, Inc.

Pubmed ID: 26588600 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


RABBIT ANTI-TYROSINE HYDROXYLASE POLYCLONAL ANTIBODY (antibody)

RRID:AB_10000323

This polyclonal targets TYROSINE HYDROXYLASE

View all literature mentions

Anti-Choline Acetyltransferase Antibody (antibody)

RRID:AB_2079751

This polyclonal targets Choline Acetyltransferase

View all literature mentions

Monoclonal anti Parvalbumin (antibody)

RRID:AB_10000343

This monoclonal targets parvalbumin

View all literature mentions

Calretinin antibody (antibody)

RRID:AB_10000321

This polyclonal targets calretinin

View all literature mentions

Calbindin D-28k (antibody)

RRID:AB_10000340

This polyclonal targets Calbindin D-28k

View all literature mentions

Calretinin antibody (antibody)

RRID:AB_10000321

This polyclonal targets calretinin

View all literature mentions

Calbindin D-28k (antibody)

RRID:AB_10000340

This polyclonal targets Calbindin D-28k

View all literature mentions

RABBIT ANTI-TYROSINE HYDROXYLASE POLYCLONAL ANTIBODY (antibody)

RRID:AB_10000323

This polyclonal targets TYROSINE HYDROXYLASE

View all literature mentions

Anti-Choline Acetyltransferase Antibody (antibody)

RRID:AB_2079751

This polyclonal targets Choline Acetyltransferase

View all literature mentions

Monoclonal anti Parvalbumin (antibody)

RRID:AB_10000343

This monoclonal targets parvalbumin

View all literature mentions