Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Molecular tools for studying the major malaria vector Anopheles funestus: improving the utility of the genome using a comparative poly(A) and Ribo-Zero RNAseq analysis.

BMC genomics | 2015

Next-generation sequencing (NGS) offers great opportunities for studying the biology of insect vectors of disease. Prerequisites for successful analyses include high quality annotated genome assemblies and that techniques designed for use with model organisms be tested and optimised for use with these insects. We aimed to test and improve genomic tools for studying the major malaria vector Anopheles funestus.

Pubmed ID: 26573092 RIS Download

Associated grants

  • Agency: Wellcome Trust, United Kingdom
    Id: 101893/Z/13/Z

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


CASAVA (tool)

RRID:SCR_001802

Software package that creates genomic builds, calls SNPs, detects indels, and counts reads from data generated from one or more sequencing runs. In addition, CASAVA automatically generates a range of statistics, such as mean depth and percentage chromosome coverage, to enable comparison with previous builds or other samples. CASAVA analyzes sequencing reads in three stages: * FASTQ file generation and demultiplexing * Alignment to a reference genome * Variant detection and counting

View all literature mentions

VectorBase (tool)

RRID:SCR_005917

Bioinformatics Resource Center for invertebrate vectors. Provides web-based resources to scientific community conducting basic and applied research on organisms considered potential agents of biowarfare or bioterrorism or causing emerging or re-emerging diseases.

View all literature mentions

CD-HIT (tool)

RRID:SCR_007105

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software program for clustering biological sequences with many applications in various fields such as making non-redundant databases, finding duplicates, identifying protein families, filtering sequence errors and improving sequence assembly etc. It is very fast and can handle extremely large databases. CD-HIT helps to significantly reduce the computational and manual efforts in many sequence analysis tasks and aids in understanding the data structure and correct the bias within a dataset. The CD-HIT package has CD-HIT, CD-HIT-2D, CD-HIT-EST, CD-HIT-EST-2D, CD-HIT-454, CD-HIT-PARA, PSI-CD-HIT, CD-HIT-OTU and over a dozen scripts. * CD-HIT (CD-HIT-EST) clusters similar proteins (DNAs) into clusters that meet a user-defined similarity threshold. * CD-HIT-2D (CD-HIT-EST-2D) compares 2 datasets and identifies the sequences in db2 that are similar to db1 above a threshold. * CD-HIT-454 identifies natural and artificial duplicates from pyrosequencing reads. * CD-HIT-OTU cluster rRNA tags into OTUs The usage of other programs and scripts can be found in CD-HIT user''s guide. CD-HIT was originally developed by Dr. Weizhong Li at Dr. Adam Godzik''s Lab at the Burnham Institute (now Sanford-Burnham Medical Research Institute).

View all literature mentions

WEBLOGO (tool)

RRID:SCR_010236

Web application to generate sequence logos, graphical representations of patterns within multiple sequence alignment. Designed to make generation of sequence logos easy. Sequence logo generator.

View all literature mentions

cutadapt (tool)

RRID:SCR_011841

Software tool that removes adapter sequences from DNA sequencing reads.

View all literature mentions

edgeR (tool)

RRID:SCR_012802

Bioconductor software package for Empirical analysis of Digital Gene Expression data in R. Used for differential expression analysis of RNA-seq and digital gene expression data with biological replication.

View all literature mentions

featureCounts (tool)

RRID:SCR_012919

A read summarization program, which counts mapped reads for the genomic features such as genes and exons.

View all literature mentions

TopHat (tool)

RRID:SCR_013035

Software tool for fast and high throughput alignment of shotgun cDNA sequencing reads generated by transcriptomics technologies. Fast splice junction mapper for RNA-Seq reads. Aligns RNA-Seq reads to mammalian-sized genomes using ultra high-throughput short read aligner Bowtie, and then analyzes mapping results to identify splice junctions between exons.TopHat2 is accurate alignment of transcriptomes in presence of insertions, deletions and gene fusions.

View all literature mentions

Cufflinks (tool)

RRID:SCR_014597

Software tool for transcriptome assembly and differential expression analysis for RNA-Seq. Includes script called cuffmerge that can be used to merge together several Cufflinks assemblies. It also handles running Cuffcompare as well as automatically filtering a number of transfrags that are likely to be artifacts. If the researcher has a reference GTF file, the researcher can provide it to the script to more effectively merge novel isoforms and maximize overall assembly quality.

View all literature mentions

Cuffmerge (tool)

RRID:SCR_015688

The main purpose of Cufflinks.cuffmerge is to merge together several Cufflinks assemblies, making it easier to produce an assembly GTF file suitable for use with Cufflinks.cuffdiff. Cufflinks.cuffmerge also runs Cuffcompare in the background and automatically filters out transcribed fragments (transfrags) that are likely to be artifacts. Trapnell C, Hendrickson D,Sauvageau S, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology. 2013;31:46-53.

View all literature mentions