Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The carbocyanine dye DiD labels in vitro and in vivo neural stem cells of the subventricular zone as well as myelinated structures following in vivo injection in the lateral ventricle.

Carbocyanines are fluorescent lipophilic cationic dyes used since the early 1980s as neuronal tracers. Several applications of these compounds have been developed thanks to their low cell toxicity, lateral diffusion within the cellular membranes, and good photostability. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine 4-chlorobenzenesulfonate (DiD) is an interesting component of this family because, in addition to the classic carbocyanine properties, it has a longer wavelength compared with its analogues. That makes DiD an excellent carbocyanine for labeling cells and tissues with significant intrinsic fluorescence. Drug encapsulation, drug delivery, and cellular transplantation are also fields using DiD-based systems where having detailed knowledge about its behavior as a single entity is important. Recently, promising studies concerned neural stem cells from the subventricular zone of the lateral ventricle in the brain (their natural niche) and their potential therapeutic use. Here, we show that DiD is able to label these stem cells in vitro and present basilar information concerning its pharmacokinetics, concentrations, and microscope protocols. Moreover, when DiD is injected in vivo in the cerebrospinal fluid present in the lateral ventricle of rat, it also labels stem cells as well as myelinated structures of the caudoputamen. This analysis provides a database to consult when planning experiments concerning DiD and neural stem cells from the subventricular zone.

Pubmed ID: 26566852 RIS Download

Mesh terms: Animals | Animals, Newborn | Carbocyanines | Dose-Response Relationship, Drug | Female | Flow Cytometry | In Vitro Techniques | Lateral Ventricles | Male | Microscopy, Confocal | Myelin Sheath | Nerve Tissue Proteins | Neural Stem Cells | Rats | Rats, Sprague-Dawley | Time Factors

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Integrated Animals

Integrated Animals is a virtual database currently indexing available animal strains and mutants from: AGSC (Ambystoma), BCBC (mice), BDSC (flies), CWRU Cystic Fibrosis Mouse Models (mice), DGGR (flies), FlyBase (flies), IMSR (mice), MGI (mice), MMRRC (mice), NSRRC (pig), NXR (Xenopus), RGD (rats), Sperm Stem Cell Libraries for Biological Research (rats), Tetrahymena Stock Center (Tetrahymena), WormBase (worms), XGSC (Xiphophorus), ZFIN (zebrafish), and ZIRC (zebrafish).

tool

View all literature mentions

Leica TCS SPE

High resolution, compact and robust confocal that enables immunohistochemical colocalization analysis of florescent markers.

tool

View all literature mentions

BD FACSCalibur Flow Cytometry System

Automated benchtop flow cytometry system. It allows measuring four fluorochrome-conjugates, forward and side scatter.

tool

View all literature mentions

GraphPad Prism

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

tool

View all literature mentions