Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Region-Specific Disruption of Adenylate Cyclase Type 1 Gene Differentially Affects Somatosensorimotor Behaviors in Mice(1,2,3).

eNeuro | 2014

Cover FigureRegion-specific adenylyl cyclase 1 (AC1) loss of function differentially affects both patterning and sensorimotor behaviors in mice. AC1 is expressed at all levels of the somatosensory pathway and plays a major role in refinement and patterning of topographic sensory maps. Cortex-specific AC1 loss of function (CxAC1KO mice) does not affect barrel patterning and activation of specific barrels corresponding to stimulated whiskers and does not impair sensorimotor behaviors. While global (AC1KO) and thalamus-specific (ThAC1KO) AC1 loss of function leads to absence of barrel patterns, selective whisker stimulation activates topographically aligned cortical loci. Despite functional topography of the whisker-barrel cortex, sensorimotor and social behaviors are impaired, indicating the importance of patterning of topographical sensory maps in the neocortex. Adenylate cyclase type I (AC1) is primarily, and, abundantly, expressed in the brain. Intracellular calcium/calmodulin increases regulate AC1 in an activity-dependent manner. Upon stimulation, AC1 produces cAMP and it is involved in the patterning and the refinement of neural circuits. In mice, spontaneous mutations or targeted deletion of the Adcy1 gene, which encodes AC1, resulted in neuronal pattern formation defects. Neural modules in the primary somatosensory (SI) cortex, the barrels, which represent the topographic distribution of the whiskers on the snout, failed to form (Welker et al., 1996; Abdel-Majid et al., 1998). Cortex- or thalamus-specific Adcy1 deletions led to different cortical pattern phenotypes, with thalamus-specific disruption phenotype being more severe (Iwasato et al., 2008; Suzuki et al., 2013). Despite the absence of barrels in the "barrelless"/Adcy1 null mice, thalamocortical terminal bouton density and activation of cortical zones following whisker stimulation were roughly topographic (Abdel-Majid et al., 1998; Gheorghita et al., 2006). To what extent does patterning of the cortical somatosensory body map play a role in sensorimotor behaviors? In this study, we tested mice with global, cortical, or thalamic loss of AC1 function in a battery of sensorimotor and social behavior tests and compared them to mice with all of the whiskers clipped. Contrary to intuitive expectations that any region-specific or global disruption of the AC1 function would lead to similar behavioral phenotypes, we found significant differences in the degree of impairment between these strains.

Pubmed ID: 26464960 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: R01 NS039050
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS084818

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Jackson Laboratory (tool)

RRID:SCR_004633

An independent, nonprofit organization focused on mammalian genetics research to advance human health. Their mission is to discover the genetic basis for preventing, treating, and curing human disease, and to enable research for the global biomedical community. Jackson Laboratory breeds and manages colonies of mice as resources for other research institutions and laboratories, along with providing software and techniques. Jackson Lab also conducts genetic research and provides educational material for various educational levels.

View all literature mentions