Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The Deacetylase Sirtuin 1 Regulates Human Papillomavirus Replication by Modulating Histone Acetylation and Recruitment of DNA Damage Factors NBS1 and Rad51 to Viral Genomes.

PLoS pathogens | 2015

Human papillomaviruses (HPV) regulate their differentiation-dependent life cycles by activating a number of cellular pathways, such as the DNA damage response, through control of post-translational protein modification. Sirtuin 1 (SIRT1) is a protein deacetylase that modulates the acetylation of a number of cellular substrates, resulting in activation of pathways controlling gene expression and DNA damage repair. Our studies indicate that SIRT1 levels are increased in cells containing episomes of high-risk HPV types through the combined action of the E6 and E7 oncoproteins. Knockdown of SIRT1 in these cells with shRNAs impairs viral activities including genome maintenance, amplification and late gene transcription, with minimal effects on cellular proliferation ability. Abrogation of amplification was also seen following treatment with the SIRT1 deacetylase inhibitor, EX-527. Importantly, SIRT1 binds multiple regions of the HPV genome in undifferentiated cells, but this association is lost upon of differentiation. SIRT1 regulates the acetylation of Histone H1 (Lys26) and H4 (Lys16) bound to HPV genomes and this may contribute to regulation of viral replication and gene expression. The differentiation-dependent replication of high-risk HPVs requires activation of factors in the Ataxia Telangiectasia Mutated (ATM) pathway and SIRT1 regulates the recruitment of both NBS1 and Rad51 to the viral genomes. These observations demonstrate that SIRT1 is a critical regulator of multiple aspects of the high-risk HPV life cycle.

Pubmed ID: 26405826 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIAID NIH HHS, United States
    Id: T32 AI060523
  • Agency: NCI NIH HHS, United States
    Id: R01CA59655
  • Agency: NCI NIH HHS, United States
    Id: R01 CA059655
  • Agency: NCI NIH HHS, United States
    Id: R01CA142861
  • Agency: NCI NIH HHS, United States
    Id: P30 CA060553
  • Agency: NIAID NIH HHS, United States
    Id: R01 AI118904
  • Agency: NCI NIH HHS, United States
    Id: R01 CA142861
  • Agency: NIAMS NIH HHS, United States
    Id: P30 AR057216
  • Agency: NIAID NIH HHS, United States
    Id: T31AI60523

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Addgene (tool)

RRID:SCR_002037

Non-profit plasmid repository dedicated to helping scientists around the world share high-quality plasmids. Facilitates archiving and distributing DNA-based research reagents and associated data to scientists worldwide. Repository contains over 65,000 plasmids, including special collections on CRISPR, fluorescent proteins, and ready-to-use viral preparations. There is no cost for scientists to deposit plasmids, which saves time and money associated with shipping plasmids themselves. All plasmids are fully sequenced for validation and sequencing data is openly available. We handle the appropriate Material Transfer Agreements (MTA) with institutions, facilitating open exchange and offering intellectual property and liability protection for depositing scientists. Furthermore, we curate free educational resources for the scientific community including a blog, eBooks, video protocols, and detailed molecular biology resources.

View all literature mentions

HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions