Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Biosynthesis of SUMOylated Proteins in Bacteria Using the Trypanosoma brucei Enzymatic System.

PloS one | 2015

Post-translational modification with the Small Ubiquitin-like Modifier (SUMO) is conserved in eukaryotic organisms and plays important regulatory roles in proteins affecting diverse cellular processes. In Trypanosoma brucei, member of one of the earliest branches in eukaryotic evolution, SUMO is essential for normal cell cycle progression and is likely to be involved in the epigenetic control of genes crucial for parasite survival, such as those encoding the variant surface glycoproteins. Molecular pathways modulated by SUMO have started to be discovered by proteomic studies; however, characterization of functional consequences is limited to a reduced number of targets. Here we present a bacterial strain engineered to produce SUMOylated proteins, by transferring SUMO from T. brucei together with the enzymes essential for its activation and conjugation. Due to the lack of background in E. coli, this system is useful to express and identify SUMOylated proteins directly in cell lysates by immunoblotting, and SUMOylated targets can be eventually purified for biochemical or structural studies. We applied this strategy to describe the ability of TbSUMO to form chains in vitro and to detect SUMOylation of a model substrate, PCNA both from Saccharomyces cerevisiae and from T. brucei. To further validate targets, we applied an in vitro deconjugation assay using the T. brucei SUMO-specific protease capable to revert the pattern of modification. This system represents a valuable tool for target validation, mutant generation and functional studies of SUMOylated proteins in trypanosomatids.

Pubmed ID: 26258470 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Macrogen (tool)

RRID:SCR_014454

A company that provides a variety of next generation sequencing services. The company provides researchers with whole genome resequencing, exome sequencing, targeted sequencing, transcriptomics, and epigenome sequencing.

View all literature mentions