Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Loss of tau rescues inflammation-mediated neurodegeneration.

Frontiers in neuroscience | 2015

Neuroinflammation is one of the neuropathological hallmarks of Alzheimer's disease (AD) and related tauopathies. Activated microglia spatially coexist with microtubule-associated protein tau (Mapt or tau)-burdened neurons in the brains of human AD and non-AD tauopathies. Numerous studies have suggested that neuroinflammation precedes tau pathology and that induction or blockage of neuroinflammation via lipopolysaccharide (LPS) or anti-inflammatory compounds (such as FK506) accelerate or block tau pathology, respectively in several animal models of tauopathy. We have previously demonstrated that microglia-mediated neuroinflammation via deficiency of the microglia-specific chemokine (fractalkine) receptor, CX3CR1, promotes tau pathology and neurodegeneration in a mouse model of LPS-induced systemic inflammation. Here, we demonstrate that tau mediates the neurotoxic effects of LPS in Cx3cr1 (-/-) mice. First, Mapt (+/+) neurons displayed elevated levels of Annexin V (A5) and TUNEL (markers of neurodegeneration) when co-cultured with LPS-treated Cx3cr1 (-/-)microglia, which is rescued in Mapt (-/-) neurons. Second, a neuronal population positive for phospho-S199 (AT8) tau in the dentate gyrus is also positive for activated or cleaved caspase (CC3) in the LPS-treated Cx3cr1 (-/-) mice. Third, genetic deficiency for tau in Cx3cr1 (-/-) mice resulted in reduced microglial activation, altered expression of inflammatory genes and a significant reduction in the number of neurons positive for CC3 compared to Cx3cr1 (-/-)mice. Finally, Cx3cr1 (-/-)mice exposed to LPS displayed a lack of inhibition in an open field exploratory behavioral test, which is rescued by tau deficiency. Taken together, our results suggest that pathological alterations in tau mediate inflammation-induced neurotoxicity and that deficiency of Mapt is neuroprotective. Thus, therapeutic approaches toward either reducing tau levels or blocking neuroinflammatory pathways may serve as a potential strategy in treating tauopathies.

Pubmed ID: 26089772 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: R01 NS074804
  • Agency: NINDS NIH HHS, United States
    Id: RF1 NS083704
  • Agency: NCATS NIH HHS, United States
    Id: UL1 TR001449
  • Agency: NIGMS NIH HHS, United States
    Id: SC1 GM095426
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS083704
  • Agency: NINDS NIH HHS, United States
    Id: R21 NS077089
  • Agency: NIA NIH HHS, United States
    Id: R01 AG023012
  • Agency: NCATS NIH HHS, United States
    Id: UL1 TR000439

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Jackson Laboratory (tool)

RRID:SCR_004633

An independent, nonprofit organization focused on mammalian genetics research to advance human health. Their mission is to discover the genetic basis for preventing, treating, and curing human disease, and to enable research for the global biomedical community. Jackson Laboratory breeds and manages colonies of mice as resources for other research institutions and laboratories, along with providing software and techniques. Jackson Lab also conducts genetic research and provides educational material for various educational levels.

View all literature mentions

Wako (tool)

RRID:SCR_013651

An Antibody supplier

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions