Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Molecular basis for differential modulation of BK channel voltage-dependent gating by auxiliary γ subunits.

The Journal of general physiology | 2015

Large conductance Ca(2+)- and voltage-activated potassium (BK) channels are comprised of pore-forming α subunits and various regulatory auxiliary subunits. The BK channel auxiliary γ (BKγ) subunits are a newly identified class of proteins containing an extracellular leucine-rich repeat domain (LRRD), a single transmembrane (TM) segment, and a short cytoplasmic C-terminal tail (C-tail). Although each of the four BKγ proteins shifts the voltage dependence of BK channel activation in a hyperpolarizing direction, they show markedly different efficacies, mediating shifts over a range of 15-145 mV. Analyses of chimeric BKγ subunits created by swapping individual structural elements, and of BKγ deletion and substitution mutants, revealed that differential modulation of BK gating by the four BKγ subunits depends on a small region consisting of the TM segment and the adjacent intracellular cluster of positively charged amino acids. The γ1 and γ2 TM segments contributed approximately -100 mV, and the γ1 and γ3 C-tails contributed approximately -40 mV, to shifting the voltage dependence of BK channel activation, whereas the γ3 and γ4 TM segments and the γ2 and γ4 C-tails contributed much less. The large extracellular LRRDs were mainly functionally interchangeable, although the γ1 LRRD was slightly less effective at enhancing (or slightly more effective at attenuating) the shift in BK channel voltage-dependent gating toward hyperpolarizing potentials than those of the other BKγ subunits. Analysis of mutated BKγ subunits revealed that juxta-membrane clusters of positively charged amino acids determine the functions of the γ1 and γ3 C-tails. Therefore, the modulatory functions of BKγ subunits are coarse- and fine-tuned, respectively, through variations in their TM segments and in the adjacent intracellular positively charged regions. Our results suggest that BK channel modulation by auxiliary γ subunits depends on intra- and/or juxta-membrane mechanisms.

Pubmed ID: 26009545 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: R01 NS078152
  • Agency: NINDS NIH HHS, United States
    Id: R21 NS075118
  • Agency: NINDS NIH HHS, United States
    Id: NS075118
  • Agency: NINDS NIH HHS, United States
    Id: NS078152

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


HEK293 (tool)

RRID:CVCL_0045

Cell line HEK293 is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HEK293 (tool)

RRID:CVCL_0045

Cell line HEK293 is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions