Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The +37 kb Cebpa Enhancer Is Critical for Cebpa Myeloid Gene Expression and Contains Functional Sites that Bind SCL, GATA2, C/EBPα, PU.1, and Additional Ets Factors.

PloS one | 2015

The murine Cebpa gene contains an evolutionarily conserved 453 bp enhancer located at +37 kb that, together with its promoter, directs expression to myeloid progenitors and to long-term hematopoietic stem cells in transgenic mice. In human acute myeloid leukemia cases, the enhancer lacks point mutations but binds the RUNX1-ETO oncoprotein. The enhancer contains the H3K4me1 and H3K27Ac histone modifications, denoting an active enhancer, at progressively increasing levels as long-term hematopoietic stem cells transition to granulocyte-monocyte progenitors. We previously identified four enhancer sites that bind RUNX1 and demonstrated that their integrity is required for maximal enhancer activity in 32Dcl3 myeloid cells. The +37 kb Cebpa enhancer also contains C/EBP, Ets factor, Myb, GATA, and E-box consensus sites conserved in the human +42 kb CEBPA enhancer. Mutation of the two C/EBP, seven Ets, one Myb, two GATA, or two E-box sites reduces activity of an enhancer-promoter reporter in 32Dcl3 cells. In 293T gel shift assays, exogenous C/EBPα binds both C/EBP sites, c-Myb binds the Myb site, PU.1 binds the second Ets site, PU.1, Fli-1, ERG, and Ets1 bind the sixth Ets site, GATA2 binds both GATA sites, and SCL binds the second E-box. Endogenous hematopoietic RUNX1, PU.1, Fli-1, ERG, C/EBPα, GATA2, and SCL were previously shown to bind the enhancer, and we find that endogenous PU.1 binds the second Ets site in 32Dcl3 cells. Using CRISPR/Cas9, we developed 32Dcl3 lines in which the wild-type enhancer alleles are replaced with a variant mutant in the seven Ets sites. These lines have 20-fold reduced Cebpa mRNA when cultured in IL-3 or G-CSF, demonstrating a critical requirement for enhancer integrity for optimal Cebpa expression. In addition, these results indicate that the +37 kb Cebpa enhancer is the focus of multiple regulatory transcriptional pathways that impact its expression during normal hematopoiesis and potentially during myeloid transformation.

Pubmed ID: 25938608 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: T32 CA060441
  • Agency: NHLBI NIH HHS, United States
    Id: U01 HL099775
  • Agency: NCI NIH HHS, United States
    Id: T32 CA60441

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


National Institutes of Health (tool)

RRID:SCR_011417

NIH is the nations medical research agency - making important medical discoveries that improve health and save lives. The National Institutes of Health (NIH), a part of the U.S. Department of Health and Human Services, is the primary Federal agency for conducting and supporting medical research. Helping to lead the way toward important medical discoveries that improve peoples health and save lives, NIH scientists investigate ways to prevent disease as well as the causes, treatments, and even cures for common and rare diseases. NIH research impacts: * child and teen health, * men's health, * minority health, * seniors' health, * women's health, and * wellness and lifestyle issues. Composed of 27 Institutes and Centers, the NIH provides leadership and financial support to researchers in every state and throughout the world.

View all literature mentions

HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions