Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Modulation of the COMT Val(158)Met polymorphism on resting-state EEG power.

Frontiers in human neuroscience | 2015

The catechol-O-methyltransferase (COMT) Val(158)Met polymorphism impacts cortical dopamine (DA) levels and may influence cortical electrical activity in the human brain. This study investigated whether COMT genotype influences resting-state electroencephalogram (EEG) power in the frontal, parietal and midline regions in healthy volunteers. EEG recordings were conducted in the resting-state in 13 postmenopausal healthy woman carriers of the Val/Val genotype and 11 with the Met/Met genotype. The resting EEG spectral absolute power in the frontal (F3, F4, F7, F8, FC3 and FC4), parietal (CP3, CP4, P3 and P4) and midline (Fz, FCz, Cz, CPz, Pz and Oz) was analyzed during the eyes-open and eyes-closed conditions. The frequency bands considered were the delta, theta, alpha1, alpha2, beta1 and beta2. EEG data of the Val/Val and Met/Met genotypes, brain regions and conditions were analyzed using a general linear model analysis. In the individuals with the Met/Met genotype, delta activity was increased in the eyes-closed condition, theta activity was increased in the eyes-closed and in the eyes-open conditions, and alpha1 band, alpha2 band and beta1band activity was increased in the eyes-closed condition. A significant interaction between COMT genotypes and spectral bands was observed. Met homozygote individuals exhibited more delta, theta and beta1 activity than individuals with the Val/Val genotype. No significant interaction between COMT genotypes and the resting-state EEG regional power and conditions were observed for the three brain regions studied. Our findings indicate that the COMT Val(158)Met polymorphism does not directly impact resting-state EEG regional power, but instead suggest that COMT genotype can modulate resting-state EEG spectral power in postmenopausal healthy women.

Pubmed ID: 25883560 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SCAN (tool)

RRID:SCR_005185

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on March 17, 2022. A large-scale database of genetics and genomics data associated to a web-interface and a set of methods and algorithms that can be used for mining the data in it. The database contains two categories of single nucleotide polymorphism (SNP) annotations: # Physical-based annotation where SNPs are categorized according to their position relative to genes (intronic, inter-genic, etc.) and according to linkage disequilibrium (LD) patterns (an inter-genic SNP can be annotated to a gene if it is in LD with variation in the gene). # Functional annotation where SNPs are classified according to their effects on expression levels, i.e. whether they are expression quantitative trait loci (eQTLs) for that gene. SCAN can be utilized in several ways including: (i) queries of the SNP and gene databases; (ii) analysis using the attached tools and algorithms; (iii) downloading files with SNP annotation for various GWA platforms. . eQTL files and reported GWAS from NHGRI may be downloaded.

View all literature mentions

STATISTICA (tool)

RRID:SCR_014213

Analytics platform with various sub platforms, each with specific performance capabilities for tasks such as data analysis, data management, data visualization, and data mining procedures.

View all literature mentions