Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The microstructural status of the corpus callosum is associated with the degree of motor function and neurological deficit in stroke patients.

PloS one | 2015

Human neuroimaging studies and animal models have suggested that white matter damage from ischemic stroke leads to the functional and structural reorganization of perilesional and remote brain regions. However, the quantitative relationship between the transcallosal tract integrity and clinical motor performance score after stroke remains unexplored. The current study employed a tract-based spatial statistics (TBSS) analysis on diffusion tensor imaging (DTI) to investigate the relationship between white matter diffusivity changes and the clinical scores in stroke patients. Probabilistic fiber tracking was also used to identify structural connectivity patterns in the patients. Thirteen ischemic stroke patients and fifteen healthy control subjects participated in this study. TBSS analyses showed that the corpus callosum (CC) and bilateral corticospinal tracts (CST) in the stroke patients exhibited significantly decreased fractional anisotropy and increased axial and radial diffusivity compared with those of the controls. Correlation analyses revealed that the motor and neurological deficit scores in the stroke patients were associated with the value of diffusivity indices in the CC. Compared with the healthy control group, probabilistic fiber tracking analyses revealed that significant changes in the inter-hemispheric fiber connections between the left and right motor cortex in the stroke patients were primarily located in the genu and body of the CC, left anterior thalamic radiation and inferior fronto-occipital fasciculus, bilateral CST, anterior/superior corona radiate, cingulum and superior longitudinal fasciculus, strongly suggesting that ischemic induces inter-hemispheric network disturbances and disrupts the white matter fibers connecting motor regions. In conclusion, the results of the present study show that DTI-derived measures in the CC can be used to predict the severity of motor skill and neurological deficit in stroke patients. Changes in structural connectivity pattern tracking between the left and right motor areas, particularly in the body of the CC, might reflect functional reorganization and behavioral deficit.

Pubmed ID: 25875333 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FSL (tool)

RRID:SCR_002823

Software library of image analysis and statistical tools for fMRI, MRI and DTI brain imaging data. Include registration, atlases, diffusion MRI tools for parameter reconstruction and probabilistic taractography, and viewer. Several brain atlases, integrated into FSLView and Featquery, allow viewing of structural and cytoarchitectonic standard space labels and probability maps for cortical and subcortical structures and white matter tracts. Includes Harvard-Oxford cortical and subcortical structural atlases, Julich histological atlas, JHU DTI-based white-matter atlases, Oxford thalamic connectivity atlas, Talairach atlas, MNI structural atlas, and Cerebellum atlas.

View all literature mentions