Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase.

PloS one | 2015

SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD), a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the active site. Further, we show that VLCAD binds strongly to cardiolipin and isolated mitochondrial membranes via a domain near the C-terminus containing lysines K482, K492, and K507. Acetylation or succinylation of these residues eliminates binding of VLCAD to cardiolipin. SIRT3 deacetylates K507 while SIRT5 desuccinylates K482, K492, and K507. Sirtuin deacylation of recombinant VLCAD rescues membrane binding. Endogenous VLCAD from SIRT3 and SIRT5 knockout mouse liver shows reduced binding to cardiolipin. Thus, SIRT3 and SIRT5 promote fatty acid oxidation by converging upon VLCAD to promote its activity and membrane localization. Regulation of cardiolipin binding by reversible lysine acylation is a novel mechanism that is predicted to extrapolate to other metabolic proteins that localize to the inner mitochondrial membrane.

Pubmed ID: 25811481 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIH HHS, United States
    Id: S10 OD016281
  • Agency: NIDDK NIH HHS, United States
    Id: P30 DK026743
  • Agency: NIDDK NIH HHS, United States
    Id: R24 DK085610
  • Agency: NIAID NIH HHS, United States
    Id: P30 AI027763
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK090242

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PSIPRED (tool)

RRID:SCR_010246

Web tool as secondary structure prediction method, incorporating two feed forward neural networks which perform analysis on output obtained from PSI-BLAST. Web server offering analyses of protein sequences.

View all literature mentions

ProteinPilot Software (tool)

RRID:SCR_018681

Software tool for protein identification and relative protein expression analysis. Used in protein research to identify proteins and search large numbers of post translational modifications. Compatible with all proteomics MS/MS systems.

View all literature mentions