Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Roles and programming of Arabidopsis ARGONAUTE proteins during Turnip mosaic virus infection.

PLoS pathogens | 2015

In eukaryotes, ARGONAUTE proteins (AGOs) associate with microRNAs (miRNAs), short interfering RNAs (siRNAs), and other classes of small RNAs to regulate target RNA or target loci. Viral infection in plants induces a potent and highly specific antiviral RNA silencing response characterized by the formation of virus-derived siRNAs. Arabidopsis thaliana has ten AGO genes of which AGO1, AGO2, and AGO7 have been shown to play roles in antiviral defense. A genetic analysis was used to identify and characterize the roles of AGO proteins in antiviral defense against Turnip mosaic virus (TuMV) in Arabidopsis. AGO1, AGO2 and AGO10 promoted anti-TuMV defense in a modular way in various organs, with AGO2 providing a prominent antiviral role in leaves. AGO5, AGO7 and AGO10 had minor effects in leaves. AGO1 and AGO10 had overlapping antiviral functions in inflorescence tissues after systemic movement of the virus, although the roles of AGO1 and AGO10 accounted for only a minor amount of the overall antiviral activity. By combining AGO protein immunoprecipitation with high-throughput sequencing of associated small RNAs, AGO2, AGO10, and to a lesser extent AGO1 were shown to associate with siRNAs derived from silencing suppressor (HC-Pro)-deficient TuMV-AS9, but not with siRNAs derived from wild-type TuMV. Co-immunoprecipitation and small RNA sequencing revealed that viral siRNAs broadly associated with wild-type HC-Pro during TuMV infection. These results support the hypothesis that suppression of antiviral silencing during TuMV infection, at least in part, occurs through sequestration of virus-derived siRNAs away from antiviral AGO proteins by HC-Pro. These findings indicate that distinct AGO proteins function as antiviral modules, and provide a molecular explanation for the silencing suppressor activity of HC-Pro.

Pubmed ID: 25806948 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIAID NIH HHS, United States
    Id: R01 AI043288
  • Agency: NIAID NIH HHS, United States
    Id: R21 AI043288
  • Agency: NIAID NIH HHS, United States
    Id: R37 AI043288
  • Agency: NIAID NIH HHS, United States
    Id: AI43288

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Entrez GEO Profiles (tool)

RRID:SCR_004584

The GEO Profiles database stores gene expression profiles derived from curated GEO DataSets. Each Profile is presented as a chart that displays the expression level of one gene across all Samples within a DataSet. Experimental context is provided in the bars along the bottom of the charts making it possible to see at a glance whether a gene is differentially expressed across different experimental conditions. Profiles have various types of links including internal links that connect genes that exhibit similar behaviour, and external links to relevant records in other NCBI databases. GEO Profiles can be searched using many different attributes including keywords, gene symbols, gene names, GenBank accession numbers, or Profiles flagged as being differentially expressed.

View all literature mentions

National Institutes of Health (tool)

RRID:SCR_011417

NIH is the nations medical research agency - making important medical discoveries that improve health and save lives. The National Institutes of Health (NIH), a part of the U.S. Department of Health and Human Services, is the primary Federal agency for conducting and supporting medical research. Helping to lead the way toward important medical discoveries that improve peoples health and save lives, NIH scientists investigate ways to prevent disease as well as the causes, treatments, and even cures for common and rare diseases. NIH research impacts: * child and teen health, * men's health, * minority health, * seniors' health, * women's health, and * wellness and lifestyle issues. Composed of 27 Institutes and Centers, the NIH provides leadership and financial support to researchers in every state and throughout the world.

View all literature mentions

National Science Foundation (tool)

RRID:SCR_012938

An independent federal agency created by Congress to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense They are the funding source for approximately 20 percent of all federally supported basic research conducted by America''s colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing. NSF leadership has two major components: a director who oversees NSF staff and management responsible for program creation and administration, merit review, planning, budget and day-to-day operations; and a 24-member National Science Board (NSB) of eminent individuals that meets six times a year to establish the overall policies of the foundation.The director and all Board members serve six year terms. Each of them, as well as the NSF deputy director, is appointed by the President of the United States and confirmed by the U.S. Senate. At present, NSF has a total workforce of about 2,100 at its Arlington, Va., headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General. NSF is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. They are tasked with keeping the United States at the leading edge of discovery in areas from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports high-risk, high pay-off ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, they ensure that research is fully integrated with education so that today''s revolutionary work will also be training tomorrow''s top scientists and engineers NSF''s task of identifying and funding work at the frontiers of science and engineering is not a top-down process.

View all literature mentions