Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Rest represses maturation within migrating facial branchiomotor neurons.

Developmental biology | 2015

The vertebrate brain arises from the complex organization of millions of neurons. Neurogenesis encompasses not only cell fate specification from neural stem cells, but also the terminal molecular and morphological maturation of neurons at correct positions within the brain. RE1-silencing transcription factor (Rest) is expressed in non-neural tissues and neuronal progenitors where it inhibits the terminal maturation of neurons by repressing hundreds of neuron-specific genes. Here we show that Rest repression of maturation is intimately linked with the migratory capability of zebrafish facial branchiomotor neurons (FBMNs), which undergo a characteristic tangential migration from hindbrain rhombomere (r) 4 to r6/r7 during development. We establish that FBMN migration is increasingly disrupted as Rest is depleted in zebrafish rest mutant embryos, such that around two-thirds of FBMNs fail to complete migration in mutants depleted of both maternal and zygotic Rest. Although Rest is broadly expressed, we show that de-repression or activation of Rest target genes only within FBMNs is sufficient to disrupt their migration. We demonstrate that this migration defect is due to precocious maturation of FBMNs, based on both morphological and molecular criteria. We further show that the Rest target gene and alternative splicing factor srrm4 is a key downstream regulator of maturation; Srrm4 knockdown partially restores the ability of FBMNs to migrate in rest mutants while preventing their precocious morphological maturation. Rest must localize to the nucleus to repress its targets, and its subcellular localization is highly regulated: we show that targeting Rest specifically to FBMN nuclei rescues FBMN migration in Rest-deficient embryos. We conclude that Rest functions in FBMN nuclei to inhibit maturation until the neurons complete their migration.

Pubmed ID: 25769695 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NICHD NIH HHS, United States
    Id: T32 HD055164
  • Agency: NCRR NIH HHS, United States
    Id: UL1 RR024999
  • Agency: NCATS NIH HHS, United States
    Id: UL1 TR000430

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Molecular Probes (tool)

RRID:SCR_013318

An Antibody supplier and subset of ThermoFisher Scientific which provides fluorescence reagents for various experiments and methods.

View all literature mentions