Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Should we have blind faith in bioinformatics software? Illustrations from the SNAP web-based tool.

PloS one | 2015

Bioinformatics tools have gained popularity in biology but little is known about their validity. We aimed to assess the early contribution of 415 single nucleotide polymorphisms (SNPs) associated with eight cardio-metabolic traits at the genome-wide significance level in adults in the Family Atherosclerosis Monitoring In earLY Life (FAMILY) birth cohort. We used the popular web-based tool SNAP to assess the availability of the 415 SNPs in the Illumina Cardio-Metabochip genotyped in the FAMILY study participants. We then compared the SNAP output with the Cardio-Metabochip file provided by Illumina using chromosome and chromosomal positions of SNPs from NCBI Human Genome Browser (Genome Reference Consortium Human Build 37). With the HapMap 3 release 2 reference, 201 out of 415 SNPs were reported as missing in the Cardio-Metabochip by the SNAP output. However, the Cardio-Metabochip file revealed that 152 of these 201 SNPs were in fact present in the Cardio-Metabochip array (false negative rate of 36.6%). With the more recent 1000 Genomes Project release, we found a false-negative rate of 17.6% by comparing the outputs of SNAP and the Illumina product file. We did not find any 'false positive' SNPs (SNPs specified as available in the Cardio-Metabochip by SNAP, but not by the Cardio-Metabochip Illumina file). The Cohen's Kappa coefficient, which calculates the percentage of agreement between both methods, indicated that the validity of SNAP was fair to moderate depending on the reference used (the HapMap 3 or 1000 Genomes). In conclusion, we demonstrate that the SNAP outputs for the Cardio-Metabochip are invalid. This study illustrates the importance of systematically assessing the validity of bioinformatics tools in an independent manner. We propose a series of guidelines to improve practices in the fast-moving field of bioinformatics software implementation.

Pubmed ID: 25742008 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SNAP - SNP Annotation and Proxy Search (tool)

RRID:SCR_002127

A computer program and web-based service for the rapid retrieval of linkage disequilibrium proxy single nucleotide polymorphism (SNP) results given input of one or more query SNPs and based on empirical observations from the International HapMap Project and the 1000 Genomes Project. A series of filters allow users to optionally retrieve results that are limited to specific combinations of genotyping platforms, above specified pairwise r2 thresholds, or up to a maximum distance between query and proxy SNPs. SNAP can also generate linkage disequilibrium plots

View all literature mentions

GeneCruiser (tool)

RRID:SCR_003153

A web service and web application for the annotation of microarray data providing integrated access to genomic information freely available from public data sources.

View all literature mentions

HuGE Navigator - Human Genome Epidemiology Navigator (tool)

RRID:SCR_003172

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 5, 2023. Knowledge base of genetic associations and human genome epidemiology including information on population prevalence of genetic variants, gene-disease associations, gene-gene and gene- environment interactions, and evaluation of genetic tests. This tool explores HuGENet, the Human Genome Epidemiology Network, which is a global collaboration of individuals and organizations committed to the assessment of the impact of human genome variation on population health and how genetic information can be used to improve health and prevent disease. What does HuGE Navigator offer? *HuGEpedia - an encyclopedia of human genetic variation in health and disease, includes, Phenopedia and Genopedia. Phenopedia allows you to look up gene-disease association summaries by disease, and Genopedia allows you to look up gene-disease association summaries by gene. In general, HuGEpedia is a searchable database that summarizes published articles about human disease and genetic variation, including primary studies, reviews, and meta-analyses. It provides links to Pubmed abstracts, researcher contact info, trends, and more. *HuGEtools - searching and mining the literature in human genome epidemiology, includes, HuGE Literature Finder, HuGE Investigator Browser, Gene Prospector, HuGE Watch, Variant Name Mapper, and HuGE Risk Translator. *HuGE Literature Finder finds published articles in human genome epidemiology since 2001. The search query can include genes, disease, outcome, environmental factors, author, etc. Results can be filtered by these categories. It is also possible to see all articles in the database for a particular topic, such as genotype prevalence, pharmacogenomics, or clinical trial. *HuGE Investigator Browser finds investigators in a particular field of human genome epidemiology. This info is obtained using a behind-the-scenes tool that automatically parses PubMed affiliation data. *Gene Prospector is a gateway for evaluating genes in relation to disease and risk factors. This tool allows you to enter a disease or risk factor and then supplies you with a table of genes associated w/your query that are ranked based on strength of evidence from the literature. This evidence is culled from the HuGE Literature Finder and NCBI Entrez Gene - And you're given the scoring formula. The Gene Prospector results table provides access to the Genopedia entry for each gene in the list, general info including links to other resources, SNP info, and associated literature from HuGE, PubMed, GWAS, and more. It is a great place to locate a lot of info about your disease/gene of interest very quickly. *HuGE Watch tracks the evolution of published literature, HuGE investigators, genes studied, or diseases studied in human genome epidemiology. For example, if you search Trend/Pattern for Diseases Studied you'll initially get a graph and chart of the number of diseases studied per year since 1997. You can refine these results by limiting the temporal trend to a category or study type such as Gene-gene Interaction or HuGE Review. *Variant Name Mapper maps common names and rs numbers of genetic variants using information from SNP500Cancer, SNPedia, pharmGKB, ALFRED, AlzGene, PDGene, SZgene, HuGE Navigator, LSDBs, and user submissions. *HuGE Risk Translator calculates the predictive value of genetic markers for disease risk. To do so, users must enter the frequency of risk variant, the population disease risk, and the odds ratio between the gene and disease. This information is necessary in order to yield a useful predictive result. *HuGEmix - a series of HuGE related informatics utilities and projects, includes, GAPscreener, HuGE Track, Open Source. GAPscreener is a screening tool for published literature on human genetic associations; HuGE Track is a custom track built for HuGE data in the UCSC Genome Browser; and Open Source is infrastructure for managing knowledge and information from PubMed.

View all literature mentions

PubMed (tool)

RRID:SCR_004846

Public bibliographic database that provides access to citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites. PubMed citations and abstracts include fields of biomedicine and health, covering portions of life sciences, behavioral sciences, chemical sciences, and bioengineering. Provides access to additional relevant web sites and links to other NCBI molecular biology resources. Publishers of journals can submit their citations to NCBI and then provide access to full-text of articles at journal web sites using LinkOut.

View all literature mentions

GWAS: Catalog of Published Genome-Wide Association Studies (tool)

RRID:SCR_012745

Catalog of published genome-wide association studies. Genome-wide set of genetic variants in different individuals to see if any variant is associated with trait and disease. Database of genome-wide association study (GWAS) publications including only those attempting to assay single nucleotide polymorphisms (SNPs). Publications are organized from most to least recent date of publication. Studies are identified through weekly PubMed literature searches, daily NIH-distributed compilations of news and media reports, and occasional comparisons with an existing database of GWAS literature (HuGE Navigator). Works with HANCESTRO ancestry representation.

View all literature mentions

dbSNP (tool)

RRID:SCR_002338

Database as central repository for both single base nucleotide substitutions and short deletion and insertion polymorphisms. Distinguishes report of how to assay SNP from use of that SNP with individuals and populations. This separation simplifies some issues of data representation. However, these initial reports describing how to assay SNP will often be accompanied by SNP experiments measuring allele occurrence in individuals and populations. Community can contribute to this resource.

View all literature mentions

International HapMap Project (tool)

RRID:SCR_002846

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. A multi-country collaboration among scientists and funding agencies to develop a public resource where genetic similarities and differences in human beings are identified and catalogued. Using this information, researchers will be able to find genes that affect health, disease, and individual responses to medications and environmental factors. All of the information generated by the Project will be released into the public domain. Their goal is to compare the genetic sequences of different individuals to identify chromosomal regions where genetic variants are shared. Public and private organizations in six countries are participating in the International HapMap Project. Data generated by the Project can be downloaded with minimal constraints. HapMap project related data, software, and documentation include: bulk data on genotypes, frequencies, LD data, phasing data, allocated SNPs, recombination rates and hotspots, SNP assays, Perlegen amplicons, raw data, inferred genotypes, and mitochondrial and chrY haplogroups; Generic Genome Browser software; protocols and information on assay design, genotyping and other protocols used in the project; and documentation of samples/individuals and the XML format used in the project.

View all literature mentions

1000 Genomes: A Deep Catalog of Human Genetic Variation (tool)

RRID:SCR_006828

International collaboration producing an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts, in an effort to provide a foundation for investigating the relationship between genotype and phenotype. The genomes of about 2500 unidentified people from about 25 populations around the world were sequenced using next-generation sequencing technologies. Redundant sequencing on various platforms and by different groups of scientists of the same samples can be compared. The results of the study are freely and publicly accessible to researchers worldwide. The consortium identified the following populations whose DNA will be sequenced: Yoruba in Ibadan, Nigeria; Japanese in Tokyo; Chinese in Beijing; Utah residents with ancestry from northern and western Europe; Luhya in Webuye, Kenya; Maasai in Kinyawa, Kenya; Toscani in Italy; Gujarati Indians in Houston; Chinese in metropolitan Denver; people of Mexican ancestry in Los Angeles; and people of African ancestry in the southwestern United States. The goal Project is to find most genetic variants that have frequencies of at least 1% in the populations studied. Sequencing is still too expensive to deeply sequence the many samples being studied for this project. However, any particular region of the genome generally contains a limited number of haplotypes. Data can be combined across many samples to allow efficient detection of most of the variants in a region. The Project currently plans to sequence each sample to about 4X coverage; at this depth sequencing cannot provide the complete genotype of each sample, but should allow the detection of most variants with frequencies as low as 1%. Combining the data from 2500 samples should allow highly accurate estimation (imputation) of the variants and genotypes for each sample that were not seen directly by the light sequencing. All samples from the 1000 genomes are available as lymphoblastoid cell lines (LCLs) and LCL derived DNA from the Coriell Cell Repository as part of the NHGRI Catalog. The sequence and alignment data generated by the 1000genomes project is made available as quickly as possible via their mirrored ftp sites. ftp://ftp.1000genomes.ebi.ac.uk ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes

View all literature mentions

1000 Genomes Project and AWS (tool)

RRID:SCR_008801

A dataset containing the full genomic sequence of 1,700 individuals, freely available for research use. The 1000 Genomes Project is an international research effort coordinated by a consortium of 75 companies and organizations to establish the most detailed catalogue of human genetic variation. The project has grown to 200 terabytes of genomic data including DNA sequenced from more than 1,700 individuals that researchers can now access on AWS for use in disease research free of charge. The dataset containing the full genomic sequence of 1,700 individuals is now available to all via Amazon S3. The data can be found at: http://s3.amazonaws.com/1000genomes The 1000 Genomes Project aims to include the genomes of more than 2,662 individuals from 26 populations around the world, and the NIH will continue to add the remaining genome samples to the data collection this year. Public Data Sets on AWS provide a centralized repository of public data hosted on Amazon Simple Storage Service (Amazon S3). The data can be seamlessly accessed from AWS services such Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Elastic MapReduce (Amazon EMR), which provide organizations with the highly scalable compute resources needed to take advantage of these large data collections. AWS is storing the public data sets at no charge to the community. Researchers pay only for the additional AWS resources they need for further processing or analysis of the data. All 200 TB of the latest 1000 Genomes Project data is available in a publicly available Amazon S3 bucket. You can access the data via simple HTTP requests, or take advantage of the AWS SDKs in languages such as Ruby, Java, Python, .NET and PHP. Researchers can use the Amazon EC2 utility computing service to dive into this data without the usual capital investment required to work with data at this scale. AWS also provides a number of orchestration and automation services to help teams make their research available to others to remix and reuse. Making the data available via a bucket in Amazon S3 also means that customers can crunch the information using Hadoop via Amazon Elastic MapReduce, and take advantage of the growing collection of tools for running bioinformatics job flows, such as CloudBurst and Crossbow.

View all literature mentions

Suite of Nucleotide Analysis Programs (tool)

RRID:SCR_009399

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented September 29, 2016. A workbench tool to make existing population genetic software more accessible and to facilitate the integration of new tools for analyzing patterns of DNA sequence variation, within a phylogenetic context. Collectively, SNAP tools can serve as a bridge between theoretical and applied population genetic analysis. The exploration of DNA sequence variation for making inferences on evolutionary processes in populations requires the coordinated implementation of a Suite of Nucleotide Analysis Programs (SNAP), each bound by specific assumptions and limitations.

View all literature mentions