Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

In silico functional pathway annotation of 86 established prostate cancer risk variants.

PloS one | 2015

Heritability is one of the strongest risk factors of prostate cancer, emphasizing the importance of the genetic contribution towards prostate cancer risk. To date, 86 established prostate cancer risk variants have been identified by genome-wide association studies (GWAS). To determine if these risk variants are located near genes that interact together in biological networks or pathways contributing to prostate cancer initiation or progression, we generated gene sets based on proximity to the 86 prostate cancer risk variants. We took two approaches to generate gene lists. The first strategy included all immediate flanking genes, up- and downstream of the risk variant, regardless of distance from the index variant, and the second strategy included genes closest to the index GWAS marker and to variants in high LD (r2 ≥0.8 in Europeans) with the index variant, within a 100 kb window up- and downstream. Pathway mapping of the two gene sets supported the importance of the androgen receptor-mediated signaling in prostate cancer biology. In addition, the hedgehog and Wnt/β-catenin signaling pathways were identified in pathway mapping for the flanking gene set. We also used the HaploReg resource to examine the 86 risk loci and variants high LD (r2 ≥0.8) for functional elements. We found that there was a 12.8 fold (p = 2.9 x 10-4) enrichment for enhancer motifs in a stem cell line and a 4.4 fold (p = 1.1 x 10-3) enrichment of DNase hypersensitivity in a prostate adenocarcinoma cell line, indicating that the risk and correlated variants are enriched for transcriptional regulatory motifs. Our pathway-based functional annotation of the prostate cancer risk variants highlights the potential regulatory function that GWAS risk markers, and their highly correlated variants, exert on genes. Our study also shows that these genes may function cooperatively in key signaling pathways in prostate cancer biology.

Pubmed ID: 25658610 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Ingenuity Pathways Knowledge Base (tool)

RRID:SCR_008117

A horizontally and vertically structured database that pulls scientific and medical information and describes it consistently using the Ingenuity Ontology. The Knowledge Base pulls information from journals, public molecular content databases, and textbooks. Data is curated and and integrated into the Knowledge Base .

View all literature mentions

PROVEAN (tool)

RRID:SCR_002182

A software tool which predicts whether an amino acid substitution or indel has an impact on the biological function of a protein.

View all literature mentions

ENCODE (tool)

RRID:SCR_006793

Encyclopedia of DNA elements consisting of list of functional elements in human genome, including elements that act at protein and RNA levels, and regulatory elements that control cells and circumstances in which gene is active. Enables scientific and medical communities to interpret role of human genome in biology and disease. Provides identification of common cell types to facilitate integrative analysis and new experimental technologies based on high-throughput sequencing. Genome Browser containing ENCODE and Epigenomics Roadmap data. Data are available for entire human genome.

View all literature mentions

1000 Genomes Project and AWS (tool)

RRID:SCR_008801

A dataset containing the full genomic sequence of 1,700 individuals, freely available for research use. The 1000 Genomes Project is an international research effort coordinated by a consortium of 75 companies and organizations to establish the most detailed catalogue of human genetic variation. The project has grown to 200 terabytes of genomic data including DNA sequenced from more than 1,700 individuals that researchers can now access on AWS for use in disease research free of charge. The dataset containing the full genomic sequence of 1,700 individuals is now available to all via Amazon S3. The data can be found at: http://s3.amazonaws.com/1000genomes The 1000 Genomes Project aims to include the genomes of more than 2,662 individuals from 26 populations around the world, and the NIH will continue to add the remaining genome samples to the data collection this year. Public Data Sets on AWS provide a centralized repository of public data hosted on Amazon Simple Storage Service (Amazon S3). The data can be seamlessly accessed from AWS services such Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Elastic MapReduce (Amazon EMR), which provide organizations with the highly scalable compute resources needed to take advantage of these large data collections. AWS is storing the public data sets at no charge to the community. Researchers pay only for the additional AWS resources they need for further processing or analysis of the data. All 200 TB of the latest 1000 Genomes Project data is available in a publicly available Amazon S3 bucket. You can access the data via simple HTTP requests, or take advantage of the AWS SDKs in languages such as Ruby, Java, Python, .NET and PHP. Researchers can use the Amazon EC2 utility computing service to dive into this data without the usual capital investment required to work with data at this scale. AWS also provides a number of orchestration and automation services to help teams make their research available to others to remix and reuse. Making the data available via a bucket in Amazon S3 also means that customers can crunch the information using Hadoop via Amazon Elastic MapReduce, and take advantage of the growing collection of tools for running bioinformatics job flows, such as CloudBurst and Crossbow.

View all literature mentions